BCA-IV Sem.

18020

B. C. A. Examination, May 2018

MATHEMATICS-III

(BCA-406)

(New)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A

(Very Short Answer Questions)

Attempt all the *five* questions. Each question carries 3 marks. Very short answer is required.

3 1 5 = 15

1. Express $\frac{2+3i}{4+5i}$ in the form of x+iy.

(2)

2. If $x + iy = \frac{3}{2 + \cos 0 + i \sin 0}$, prove that:

 $(x-1)(x-3) + y^2 = 0.$

3. Test for convergence $\sum_{n=1}^{\infty} \sin \frac{1}{n}$.

4. If $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$, find the directional derivative of $\frac{1}{r}$ in the direction of \vec{r} .

5. For any scalar function f(x, y, z), prove that curl grad f=0.

Section-B

(Short Answer Questions)

Attempt any *two* questions out of the following three questions. Each question carries $7\frac{1}{2}$ marks. Short answer is required. $7\frac{1}{2} \times 2 = 15$

6. Solve $(x+1)\frac{dy}{dx} = x(y^2+1)$. 7½

- 7. If $\tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi$, then prove that a+b+c=abc.
- 8. Solve $\frac{dy}{dx} = \frac{1+y^2}{\tan^{-1}y x}$. 7½

Section-C

(Detailed Answer Questions)

Attempt any *three* questions out of the following five questions. Each question carries 15 marks.

Answer is required in detail. $15 \times 3 = 45$

- 9. (a) Test the convergence of the series: $7\frac{1}{2}$ $\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$
 - (b) Test for convergence the series whose *n*th term is $\frac{r''}{n''}$, r > 0.
- 10. (a) Show that the vector field defined by:

$$\vec{F} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$$

is irrotational. Find the scalar potential u such that $\vec{F} = \text{grad } u = \nabla u$.

(b) If \vec{E} and \vec{H} are irrotational, prove that $\vec{E} \times \vec{H}$ is solenoidal. https://www.ccsustudy.com 71/2

- 11. (a) Test for the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{(\log n)^n}.$ 7½
 - (b) Find the directional derivative of $f(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector $2\hat{i} \hat{j} 2\hat{k}$. $7\frac{1}{2}$
- 12. (a) Solve $y \sec^2 x + (y+7) \tan x \frac{dy}{dx} = 0$. $7\frac{1}{2}$
 - (b) Solve $(1+x^2)\frac{dy}{dx} + 2xy = \cos x$. 7½
- 13. (a) Find the directional derivative of $f(x,y,z) = x^2y^2z^2$ at the point (1, 1, -1) in the direction of the tangent to the curve $x = e^t$, $y = 2\sin t$, $z = t \cos t$, at t = 0. $7\frac{1}{2}$
 - (b) Solve $x(e^y + 4)dx + e^{x+y}dy = 0$. 7½