

COURSE NOTES

FOR

Bachelor Computer Applications

First Semester

Programming Principles & Algorithms

as per syllabus of

Mahatma Gandhi Kashi Vidyapith, Varanasi

Prepared By:

Department of Computer Science

Microtek College of Management & Technology

Varanasi.

BCA-S102T Programming Principles & Algorithms

UNIT-I
Introduction to ‘C’ Language
History, Structures of ‘C’ Programming, Function as building blocks.
Language Fundamentals
Character set, C Tokens, Keywords, Identifiers, Variables, Constant, Data Types, Comments.

UNIT-II
Operators
Types of operators, Precedence and Associativity, Expression, Statement and types of
statements Built in Operators and functions
Console based I/O and related built in I/O function: printf(), scanf(), getch(), getchar(),
putchar(); Concept of header files, Preprocessor directives: #include, #define.

UNIT-III
Control structures
Decision making structures: If, If-else, Nested If-else, Switch; Loop Control structures: While,
Do-while, for, Nested for loop; Other statements: break, continue, goto, exit.

UNIT-IV
Introduction to problem solving
Concept: problem solving, Problem solving techniques (Trial & Error, Brain Storming, Divide
& Conquer)
Steps in problem solving (Define Problem, Analyze Problem, Explore Solution) Algorithms
and Flowcharts (Definitions, Symbols), Characteristics of an algorithm ,Conditionals in
pseudo-code, Loops in pseudo code Time complexity: Big-Oh notation, efficiency Simple
Examples: Algorithms and flowcharts (Real Life Examples)

UNIT-V
Simple Arithmetic Problems Addition / Multiplication of integers, Determining if a number is
+ve / -ve / even / odd, Maximum of 2 numbers, 3 numbers, Sum of first n numbers, given n

numbers, Integer division, Digit reversing, Table generation for n, ab, Factorial, sine series,

cosine series,Pascal Triangle, Prime number, Factors of a number, Other problems such as
Perfect number, GCD numbers etc (Write algorithms and draw flowchart), Swapping

UNIT-VI
Functions
Basic types of function, Declaration and definition, Function call, Types of function, Parameter
passing, Call by value, Call by reference, Scope of variable, Storage classes, Recursion.

Reference Books :
1. Let us C-Yashwant Kanetkar.
2. Programming in C-Balguruswamy
3. C in Depth– S.K. Srivastava,Deepali Srivastava

UNIT - I
History of C Language

One such attempt was development of a language called Combined Programming

Language (CPL) at Cambridge University in 1963. However, it turned out to be too complex,

hard to learn, and difficult to implement. Subsequently, in 1967, a subset of CPL, Basic

CPL (BCPL) was developed by Martin Richards incorporating only the essential features.

However, it was also not found to be sufficiently powerful. Around the same time, in

1970, another subset of CPL, a language called B was developed by Ken Thompson at Bell

Labs. However, it turned out to be not sufficient in general. In 1972, Dennis Ritchie at Bell

Labs developed C language incorporating best features of both BCPL and B languages.

Features of C Language

C is often termed as a middle level programming language because it combines the power of a

high-level language with the flexibility of a low-level language. C is designed to have a good

balance between both extremes. Programs written in C give relatively high machine efficiency as

compared to high-level languages. Similarly, C language programs provide relatively high

programming efficiency as compared to low-level languages.

Why is C Language Popular

There are several features which make C, a suitable language to write system programs.
These are:

 C is a machine independent and highly portable language.

 It. is easy to learn, it has only 32 keywords.

 Users can create their own functions and add to C library to perform a variety of tasks.

 C language allows manipulation of BITS, BYTES, and ADDRESSES.

 It has a large library of functions.

Components of C Language (Tokens)

A Token is a smallest element in a program that is meaningful to the computer. These Tokens
define the structure of the language.

The five main components (tokens) of 'C' language are:

 The character set

 The Data types

 Constants

 Variables

 Keywords

The Character Set

Any alphabet, digits or special symbol used to represent information is denoted by character.
The characters in C are grouped into four categories:

 Letters A - - - Z or a - z

 Digits 0,1,----9

 Special Symbols -.’@#%'" &*() _-+ = I\{}[]:;"'< > , . ? /.

 White spaces blank space, horizontal tab, carriage return, new line, and form

 feed.

The Data Types

The power of a programming language depends, among other things, on the range of

different types of data it can handle. Data values passed in a program may be of different types.

The C data types can be broadly divided into two categories.

Void Array

Character Pointer

Integer Structure

Float Union

Double Enum

Primary Data Types

There are five primary data types in C language.

 char Char data type is used to store a single character belonging

to the defined character set of 'C' language.

 int int data type is used to store signed integers, for example,

positive or negative integers.

 float float data type is used to store real numbers with single.

precision (precision of six digits after decimal points).

 double double data type stores real numbers with double precision,

that is, twice the storage space required by float.

 void void data type is used to specify empty set containing no

 values.

Data Types

Primary Data type Secondary Data type

 Character

Data Type Storage Space Format Range of Values

Char 1 byte %c ASCII character set (-128 to 127)

unsigned char 1 byte %c ASCII character set (0 to 255)

 Integer

Data Type Storage Space Format Range of Values

Int 2 bytes %d ,%i -32768 to +32767

unsigned int 2 bytes %u 0 to 65535

long int 4 bytes %ld -2147483648 to +2147483648

long unsigned int 4 bytes %lu 0 to 4,294,967,295

 Real Numbers

Data Type Storage Space Format Range of Values

Float 4 bytes %f -3.4*1038 to +3.4*1038

Double 8 bytes %lf -1.7*10308 to +1.7*10308

long double 10 bytes %Lf -1.7*104932 to +1.7*104932

Variables

Variables are the data items whose values may vary during the execution of the program.
A specific location or address in the memory is allocated for each variable and value of that
variable is stored in that location.

Rules for declaring variable name

 Variable name may be a combination of alphabet, digits, or underscores and its

length should not exceed eight characters.

 First character must be an alphabet.

 No commas or blank spaces are allowed in variable name.

 Among the special symbols, only underscore can be used in variable name.

 Example: emp_age and item_ 4

Variable Declaration and values Assignment

All the variables must be declared before their use. Declaration does two things:

 It tells the compiler what the variable name is.
 It specifies the type of data, the variable will hold.

A variable declaration has the form:

here type_specifier is one of the valid data types. List_ of_variables is a comma

separated list of identifiers representing the program variables.

 Examples:

int a,b,c;

char ch;

 To assign values to the variable, assignment operator (=) is used. Assignment is of the

form

 Example:

int A,B;

A=10;

B=50;
 It is also possible to assign a value to the variable at the time of declaration.

Example

int A=10;

char ch= ’@’;

Constants

Constants are the fixed values that remain unchanged during the execution of a program
and are used in assignment statements. Constants are stored in variables.

To declare any constant, the syntax is

type_specifier list_of_variables;

variable_name = value;

Data type variable_name=value;

const data type var_name = value ;

In 'C' language, there are five types of constants.

1 character
character constant consist of a single character, single digit, or a single special symbol

enclosed within a pair of single inverted commas. i.e. ‘A’,’%’

2 integer An integer constant refers to a sequence of digits. There are. Three types of integers: decimal,

octal and hexadecimal. In octal notation, write (0) immediately before the octal representation.

For example: 0.76, -076.

In hexadecimal notation, the constant is preceded by 0x. Example: 0x3E, -0x3E.

No commas or blanks are allowed in integer constants.

3 real
A real constants consist of three parts : Sign (+ or 0) , Number portion (base),
exponent portion
i.e. +.72 , +72 , +7.6E+2 , 24.3e-5

4 string
A string constant is a sequence of one or more characters enclosed within a pair of double

quotes (" "). If a single character is enclosed within a pair of double quotes, it will also be

interpreted as a string constant.

Examples:

"Welcome To Microtek \ n” , “a” , “123”

5 logical
A logical constant can have either a true value or a false value. In 'C all the non zero values

are treated as true value while 0 is treated as false.

Keywords

 Keywords are the words which have been assigned specific meaning in the context

of C language programs. Keyword should not be used as variable names to avoid

problems.

A keyword is a word or identifier that has a particular meaning to the programming

language.

auto break case char continue double float int

short static typedef const default else for long

signed struct union void do enum goto register

sizeof switch unsigned volatile while extern if return

http://en.wikipedia.org/wiki/Word
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language

Structure of a C program
Every C program consists of one or more functions. A function is nothing but a group or

sequence of C statements that are executed together. Each C program function performs a

specific task. The ‘main()’ function is the most important function and must be present in

every C program. The execution of a C program begins in the main() function.

The figure below shows the structure of a C program.

Documentations

The documentation section consist of a set of comment lines giving the name of the program,

the another name and other details, which the programmer would like to use later.

Preprocessor Statements

The preprocessor statement begin with # symbol and are also called the preprocessor

directive. These statements instruct the compiler to include C preprocessors such as header

files and symbolic constants before compiling the C program.

Global-Declarations

The variables are declared before the main () function as well as user defined functions are

called global variables. These global variables can be accessed by all the user defined

functions including main () function.

The main () function

Each and Every C program should contain only one main (). The C program execution

starts with main () function. No C program is executed without the main function. The main

() function should be written in small (lowercase) letters and it should not be terminated by

semicolon. Main () executes user defined program statements

Braces
Every C program should have a pair of curly braces ({, }). The left braces indicates the

beginning of the main () function and the right braces indicates the end of the main ()

function. These braces can also be used to indicate the user-defined functions beginning and

ending. These two braces can also be used in compound statements.

Local Declarations

The variable declaration is a part of C program and all the variables are used in main ()

function should be declared in the local declaration section is called local variables. Not only

variables, we can also declare arrays, functions, pointers etc. These variables can also be

initialized with basic data types.

Program statements

These statements are building blocks of a program. They represent instructions to the

computer to perform a specific task (operations). it also includes comments that are

enclosed within /* and */ . The comment statements are not compiled and executed and

each executable statement should be terminated with semicolon.

User defined functions

These are subprograms, generally, a subprogram is a function and these functions are

written by the user are called “user defined functions”. These functions are used to perform

user specific tasks and this also contains set of program statements. They may be written

before or after a main () function and called within main () function. This is an optional to

the programmer.

i.e.

main() function1() function2()

{ { {

 statement1; statement1; statement1;

 statement2; statement2; statement2;

 ……; ……..; ……;

} } }

Writing your first C program

/* Author: SABAB ALI KHAN

 Purpose: This program prints a message

*/
1. #include<stdio.h>

2. main()

3. {

4. printf(“Hello, world !”);

5. }

Type this program in any text editor and then compile and run it using a C-compiler. However,

your task will become much easier if you are using an IDE such as Turbo C.

How to Run your Program.

1. Go to Start then select Run option

2. Open command prompt (type cmd and press Enter Key / press OK)

3. Go to the directory where you have installed Turbo C using command window.

4. Type TC at the DOS command prompt.

5. In the edit window that opens, type the mentioned program above.

6. Save the program as hello.c by pressing F2 or Alt + ‘S’.

7. Press Alt + ‘C’ or Alt + F9 to compile the program.

8. Press Alt + ‘R’ or Ctrl + F9 to execute the program.

9. Press Alt + F5 to see the output.

Programmers are free to name C program functions (except the main() function).

Understanding the program

In the program you saw above, the information enclosed between ‘/* */’ is called a ‘comment’

and may appear anywhere in a C program. Comments are optional and are used to increase

the readability of the program.

The ‘#include’ in the first line of the program is called a preprocessor directive.

‘stdio.h’ refers to a file supplied along with the C compiler. It contains ordinary C statements.

These statements give information about many other functions that perform input-output

roles. Thus, the statement ‘#include<stdio.h>’ effectively inserts the file ‘stdio.h’ into the

program file.

The next statement is the main() function. As you already know, this is the place where the

execution of the C program begins.

Next comes the opening brace ‘{’, which indicates the beginning of the function. The closing

brace ‘}’ indicates the end of the function.

The statement printf() enclosed within the braces‘{}’ informs the compiler to print (on the

screen) the message enclosed between the pair of double quotes. In this case,

 ‘Hello, world !’ is printed.

UNIT-II

Operators
An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulation on data stored in variables. The variables that are operated are termed as
operand.

C operators can, be classified into a number of categories. They include:

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Conditional operators

 Special operators

Arithmetic operators

C provides all the basic arithmetic operators. There are five arithmetic operators in C.

Operator Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder after integer division

The division operator (/) requires the second operand as non zero, though the operands

not be integers.

The operator (%) is known as modulus operator. It produces the remainder after the

division of the two operands. The second operands must be non zero.

Example: if a = 25, b = 4

then a + b = 29

a - b = 21

a * b = 100

a/b = 6 (decimal parts truncated)

a%b = 1

Relational Operators

Relational operator is used to compare two operands to see whether they are equal to

each other, unequal, or one is greater or lesser than the other.

The operands can be variable, constants, or expression and the result is a numerical

value. There are six relational operators.

Operator Meaning

== equality

!= Not equal to

< less than

> greater than

< = less than or equal to

> = greater than or equal to

A simple relation contains only one relational operator and takes the following form:

ae-1 and ae-2 are arithmetic expressions, which may be simple
constants, variables, or combination of these. The value of relational
operator is either 1 or O. If the relation is
- true, result is 1 otherwise it is O.

Example:

Logical Operators

Logical operators are used to combine two or more relational
expressions. C provides
three different logical operators.

Expressions Result

4.5 <= 10 1 (True)

4.5 < -10 0 (False)

-35 >= 0 0 (False)

10 < 7+5 1 (True)

Operator Meaning

&& Logical and

I I
I I Logical or

! Logical not

ae-1 relational operator ae-2

Logical AND (&&)

The result of Logical AND will be true only if both operands are true.

 e.g. if (10 > 15 && 5 < 10) Result will be 0 (false)

 if (5 < 10 && 10 > 6) Result will be 1 (true)

 Explanation:

 10 > 15 && 5 < 10

 0 && 1

 0 (false)

Logical OR (||)

The result of Logical OR will be true if any one operand is true

 e.g. if (10 > 15 || 5 < 10) Result will be 1 (True)

 if (5 > 10 || 9 < 6) Result will be 0 (false)

 if (5 > 10 || 2 > 6) Result will be 0 (false)

 Explanation: 10 > 15 || 5 < 10

 0 || 1

 1 (true)

Result_exp1 Result_exp2 Final Result

0 0 0

0 1 0

1 0 0

1 1 1

Result_exp1 Result_exp2 Final Result

0 0 0

0 1 1

1 0 1
1 1 1

Logical NOT (!)
Logical NOT (!) is used to reverse the value of the expression.

 e.g. if (! (5 > 10)) Result will be 1 (TRUE)

 if (! (10 > 15 && 5 < 10)) Result will be 1 (TRUE)

 if (! (5 > 10 || 9 < 6)) Result will be 1 (TRUE)

 Explanation:

 ! (5 > 10)

 ! 0 (flase)

 1 (true)

Assignment Operator

Assignment operators are used to assign the result of an expression to a variable. The most

commonly used assignment operator is (=).

An expression with assignment operator is of the following form:

Identifier = expression;

Example:

#include <stdio.h>

 void main()

{

 int i ;

 i = 5;

printf ("%d", i);

i = i + 10;

 printf ("\n%d", i):

 }

Output will be : 5

 10
Expressions like i = i+10; , i = i-5; , i = i*2; , i = i/6, and i = i% 10 can be rewritten

using shorthand assignment operators.

The shorthand assignment operators are of following type:

Expr_Result Final Result

0 1

1 0

V op = expression;

This is equivalent to

 Example: I = i+5; is equivalent to i + = 5;

 I = i * (y + 5); is equivalent to i * = (y + 5);

Increment and Decrement Operators

'C' has two very useful operators + + and -- called increment and decrement operators

respectively. These are generally not found in other languages. These operators are called

unary operators as they require only one operand. This operand should necessarily be

variables not constant.

The increment operator (+ +) adds one to the operand while the decrement operator

(--) subtracts one from the operand.
These operators may be used in two ways.

1) Prefix :

 When the operator used before the operand, it is termed as prefix.

 e.g. ++A , --B
 in this case the value of operand follow First Change Then Use (F.C.T.U) concept

2) Postfix:

 When the operator used before the operand, it is termed as prefix.

 e.g. A++ , B--

 in this case the value of operand follow First Use Then Change (F.U.T.C) concept

Example:

Postfix

int N=10, R;

 R = N++; // post increment

 printf(“R=%d \n N=%d ”, R , N);

 it will produce output :

 R=10 (Because before increment, value will assign first)

 N=11

Postfix

int N=10, R;

 R = ++N; // pre increment

 printf(“R=%d \n N=%d ”, R , N);

 it will produce output:

 R=11 (Because value will increment first, then value will assign)

 N=11

Example 1:

#include <stdio.h>

V = V op expression;

void main()

 {

 int R, N=10;

 clrscr();

 R = ++N + --N + --N + N++ + --N ;

 printf(“ R= %d \n N=%d” , R,N);

 getch();

}
The output will be :

 R=40

 N=9

Explanation:

In this example there are for than one increment or decrement expressions are used, so that it follows

the execution order (prefix  operation  postfix).

in this statement (++N + --N + --N + N++ + --N ;) all prefix expression execute first ,then it perform

operations like addition/subtraction or assignment etc. and after that it perform all postfix operations. In

the operation the value of all operand will give last modified value by prefix operations.

Conditional or Ternary Operator

 A ternary operator is one which contains three operands. The only ternary operator available in

C language is conditional operator pair " ? : " . It is of the form

exp1 ? exp2 : exp3 ;

This operator works as follows. Exp1 is evaluated first. If the result is true then exp2 is

executed otherwise exp3 is executed.

 Example 1:

a = 10;

b = 15;

x = (a > b ? a : b);

in this expression value of b will be assigned to x.

 Example 2:

a = 10;

b = 15;

x = (a > b)? printf (“First value is Greater “) : printf (“Second value is greater”);

in this expression the result will be-

 Second value is greater

Bitwise operators

Bitwise operators are used to manipulate of data at bit level. These operators are used for

testing the bits, or shifting them right or left. Bitwise operators may not be applied to float

or double data type.

Some Bitwise Operators

Operator Meaning

"

& Bitwise Logical AND

|

,
Bitwise Logical OR

^ Bitwise Logical XOR

<< Left shift
I
.
.
.
;
.

>> Right shift

~ One's complement

 Bitwise Logical AND (&)

 e.g.

 int N=10;

 N= N & 6 ;

 Printf(“N=%d”,N);

(10)2 AND (&) (6)2

This will produce output:

 N=2

Bitwise Logical OR (|)

 e.g.

 int N=10;

 N= N | 6 ;

 Printf(“N=%d”,N);

I) (6)2 (10)2 OR (

1 0 1 0 0 1 1 0

0 0 1 0

1 0 1 0 0 1 1 0

1 1 1 0

This will produce output: N=14

Bitwise XOR (^)

 The Bitwise XOR operator produce result 1 if both bits are different otherwise it will produce 0.

 e.g.

 int N=10;

 N= N ^ 6 ;

 Printf(“N=%d”,N);

(10)2 XOR (^) (6)2

This will produce output:

 N=12

Shift Operators

Shift operators use a shift distance (number of shifts) as the right-hand operand and the value
which is to be shifted as the left-hand operand.
Left Shift (<<)
Left shift operator shifted bits left. When bits are shifted left, zero is filled in from right.
Each left-shift corresponds to multiplication of the value by 2.

It will give result V=V*2n , where n is the number of bits to be shifted and v is the value to be

shifted.
e.g.
 int N=20; it will produce Value
 N=N<<2; N=N*22

 N=20 * 22

 N=20 * 4
 N=80
(20)10  (1 0 1 0 0)2

1 0 1 0 0 1 1 0

1 1 0 0

After Shifting the Value (20)10  (0 0 0 1 0 1 0 0)2 will be (80)10  (0 1 0 1 0 0 0 0)2

Right Shift (>>)

Right shift operator shifted bits right . when bits are shifted right, sign bit are filled in from left.
Each right-shift corresponds to division of the value by 2.

It will give result V=V/2n , where n is the number of bits to be shifted and v is the value to be

shifted.
e.g.
 int N=20; it will produce Value
 N=N>>2; N=N/22

 N=20 / 22

 N=20 / 4
 N=5
(20)10  (1 0 1 0 0)2

Sign bit for Positive number is zero (0) , and for Negative number (1)

After Shifting the Value (20)10  (0 0 0 1 0 1 0 0)2 will be (5)10  (0 0 0 0 0 1 0 1)2

One's Complement Operator: ~

The one's complement operator (~), sometimes called the "bitwise complement" operator, yields a
bitwise one's complement of its operand. That is, every bit that is 1 in the operand is 0 in the result.
Conversely, every bit that is 0 in the operand is 1 in the result. The operand to the one's complement
operator must be an integral type.

Example

let us take decimal no. 10.First this number is converted to binary equivalent i.e.

0000000000001010,taking one’s complement, the number becomes 1111111111110101.

Example

Decimal Original number(j) One’s Complement(m)

1 0000000000000001 1111111111111110

2 0000000000000010 1111111111111101

3 0000000000000100 1111111111111011

4 0000000000001000 1111111111110111

Special operators

'C' language supports some special operators such as comma operator, sizeof operator,

pointer operators (& and *), and member selection operators (. and ->). Pointer operators

will be discussed while introducing pointers while member selection operator will be

discussed with structures and union. Let us discuss comma operator and sizeof operator.

comma operator
This operator is used to link the related expressions together.

Example:

intval, x, y;

value = (x= 10, y = 5, x+y);

it first assigns 10 to x then 5 to y finally sum x + y to value.

sizeof operator

The sizeof operator is a compile time operator and when used with an operand, it returns

the number of bytes the operand occupies. The operand may be a variable, constant, or

a data type qualifier.

Example:

int n;

n = sizeof (int);

printf ("n=%d \n", n);

n = sizeof (double);

printf ("n=%d", n);

Output: n = 2

n = 8

Operator precedence

Precedence defines the sequence in which operators are to be applied on the operands

while evaluating the expressions involving more than one operator. Operators of same

precedence are evaluated from left to right or right to left, depending upon the level. This

is known as associativity property of an operator.

DESCRIPTION OPERATORS ASSOCIATIVITY

Function expression

Array expression

Structure operator

Structure operator

Unary Minus

()

[]

->

.

-

L  R

L  R

L  R

L  R

R  L

Increment / Decrement

One's complement

Negation

Address of

value at address

Type cast

Size in bytes

++ --

~

!

&

*

(type)

sizeof

R  L

R  L

R  L

R  L

R  L

R  L

R  L

Multiplication

Division

Modulus

Addition

Subtraction

*

/

%

+

-

L  R

L  R

L  R

L  R

L  R

Left shift

Right shift

<<

>>

L  R
L  R

Less than

Less than or equal to

Greater than

Greater than or equal to

<

<=

>

>=

L  R
L  R

L  R

L  R

equal to

Not equal to

==

!=

L  R
L  R

Bitwise AND

Bitwise XOR

&

^

L  R
L  R

Bitwise OR | L  R
Logical AND

Logical OR

&&

||

L  R

L  R

Conditional ?: R  L
Assignment =

*= /= %=

+= -= &=

^ = |=

<< = >> =

R  L
R  L

R  L

R  L

R  L

Comma , R  L

Expressions
An expression is a combination of variables, constants, and operators arranged according

to syntax of the language. Some examples of expressions are:

e.g.

c = (m + n) * (a - b);

temp = (a + b + 'c) / (d - c);

Expression is evaluated by using assignment statement.

Such a statement is of the form

 Variable = expression ;

The expression is evaluated first, then the value is assigned to the variable left hand side.

But all the relevant variables must be assigned the values before evaluation of the expression.

Type conversion in Expressions

Automatic Type conversion :

If the operands are different types, the lower type is automatically converted to the

higher type before the operation proceeds. The result is of the higher type.

Given below is the sequence of rules that are applied while evaluating expressions.

 -

Op-l Op-2 Result

long double any long double

double any double

float any float

unsigned long int any unsigned long int

long int any long int

unsigned int any unsigned int

The final result of an expression is converted to the type of the variable on the left

of the assignment sign before 'assigning value to it.

However, the following changes are introduced during the final assignment.

 float to int causes truncation of the fractional part.

 double to float causes rounding of digits.

 long int to int causes dropping of the excess higher order bits .

Casting a value

Casting a value is forcing a type conversion in a way that is different from the auto

conversion. The process is called type cast. The general form of casting is

 (type_desired) expression;

where type_desired: standard C data types and expression : constant, variable or expression.

 Example:

 #include <stdio.h>

 void main()

 {

 int total_marks=500,ob_marks=234;

 float per1 , per2;

 per1 = (ob_marks / total_marks) * 100;

 per2 = (float) (ob_marks / total_marks) * 100;

 printf(“ Percentage without type casting = %.2f”,per1);

printf(“ Percentage After type casting = %.2f”,per2);

 getch();

 }

The Output will be:

 Percentage without type casting = 0.00

 Percentage After type casting = 46.80

in expression per2 = (float) (ob_marks / total_marks) * 100; division is converted to float, otherwise

decimal part of the result of division would be lost and per1 would represent a wrong figure or zero.

Introduction to Input/Output
Input refers to accepting of data while output refers to the presentation of data. Normally

the data is accepted from keyboard and is outputted on to the screen.

C language has a series of standard input/output (I/O) functions. Such I/O functions

together form a library named stdio.h. Irrespective of the version of 'C' language, user will

have access to all such library functions. These library functions are classified into three

broad categories.

 a) Console I/O functions functions which accept input from

keyboard and produce output on the

screen.

 b) Disk I/O functions functions which perform I/O operations

on secondary storage devices like floppy

disks or hard disks.

 c) Port I/O functions functions which perform I/O operations

on various ports like printer port, and

mouse port.

Console I/O Functions

Console I/O refers to the operations that occur on the keyboard and the screen of your

computer. Console I/O functions can be further classified as

 Formatted Console, Input I Output

 Unformatted Console Input / Output

Console Input/Output functions

Formatted functions Unformatted functions

Type Input Output Type Input Output

char scanf() printf() char
getch()
 getche()
 getchar()

putch()
putchar()

int scanf() printf() int - -

float scanf() printf() float - -

string scanf() printf() string gets() puts()

Formatted Console I/O Functions

As can be seen from Figure 11.1 the functions printf(), and scanf() fall under the category

of formatted console I/O functions. These functions allow us to supply the input in a fixed

format and let us obtain the output in the specified form.

 Formatted Output

The printf() statement provides certain features through which the screen output

is effectively controlled. The general form of printf() function is:

printf ("format string", list of variables) ;

The format string can contain:

a) Characters that are simply printed as they are
b) Conversion specifications that begin with a % sign
c) Escape sequences that begin with a \ sign

For example, look at the following program:

main()
{
int avg = 346 ;
float per = 69.2 ;
printf ("Average = %d\nPercentage = %f", avg, per) ;
}

The output of the program would be...

Average = 346
Percentage = 69.200000

Conversion Specifications

The conversion specifications are used to provide the type and size of the data. Each

conversion specification must begin with %.

In the above example %d and %f are .the conversion characters.

The general form of conversion specifier is

Where fws = field width specifier

fx = format specifier

The field width specifier tells printf() how many columns on the screen should be

used while printing a value.

Example: %10d tells to print the variable as a decimal integer in the field of 10 columns.

 If we include a minus sign in conversion specification (% - 10d), this means left justification

 is desired and the value will _ be padded with blanks on the right.

Given below is a list of conversion characters that can be used with the printf()
function.

% fws fx

 Data Type Conversion Character

 -,

 short signed %d or % i

 short unsigned %u

 Integer Long signed %Id

 Long unsigned %Iu

 unsigned Hexadecimal %x

 unsigned octal %0

 J

 float %f

 "

 Real'

 double % If

 signed character %c

 character

 _. ,
 unsigned character %c

 String %s

Escape Sequences

The backslash symbol (\) is considered as an escape character because it causes an ,escape

from the normal interpretation of a string, so that the next character. is recognized as the

one that has special meaning.

Escape sequence Purpose Escape sequence Purpose

\n New line \t Tab

\b Backspace \r Carriage return

\f form feed \a Alert

\' single quote \" double quote

 \\ backslash

Output of Integer Numbers

The format specification for printing an integer number is %wd where ’ w‘ specifies minimum

width for the output. The number is written right justified in the given field width.
Example:

printf ("%d", 12345);
1 2 3 4 5

printf ("%10d", 12345);

printf ("% 010d", 12345);

printf ("% -10d", 12345);

The Empty field will be fill with space.

Output of Real Numbers

The real number is displayed in decimal notation with format specification “% w.p f “ where 'w' ,

is the integer which represents the minimum number of positions that are to be used and

'p' indicates that In the total width, how many numbers will be placed after the decimal.

Example:

 printf (“%7.4f ” , 96.7654);

printf ("%7.2", 96.7654);

print ("%f', ,96.7654);

Printing of String

The format specification for outputting strings is similar to that of real numbers. It is of the

form ‘%w.p s ’ where ‘w’ specifies the field width for display and 'p’ specifies the number of

characters to be displayed. The display is right justified.

Example: Let the string to be printed is "NEW DELHI 110001"

The total length is 16 characters (including blanks).

specification output

%s

% 20s

% 20.7s

 Formatted Input

Formatted input refers to an input data that has been arranged in a particular format For

the formatted input we use the function scanf().

scanf() function

scanf() function, allows us to read formatted data and automatically convert numeric

 1 2 3 4 5

0 0 0 0 0 1 2 3 4 5

1 2 3 4 5

9 6 . 7 6 5 4

 9 6 . 7 7

9 6 . 7 6 5 4

N E W D E L H I 1 1 0 0 0 1

 N E W D E L H I 1 1 0 0 0 1

 N E W D E L

 Information "into integers and float. The general from of scanf() is

scanf ("control string", arg1, arg2,);

Control string specifies the field format in which data is to be entered and the arguments

arg1, arg2 - - - - - specify the ADDRESS OF LOCATION where value is to be stored. Control

string and arguments are separated by commas.

Given below is a list of format specifier used to read the inputs:

Code Meaning Code Meaning

%c Read a single character .. %d Read a decimal integer

%Id Read a long integer %i Read a decimal integer

%e
Read a floating point
number

%f Read a floating point number

%h Read a short ·integer
%0

.
Read an octal

%s Read a string %x Read a hexadecimal number

%p Read a pointer

%n Reads an integer value equal
 to the no. of character read so far.

Input of Integer Numbers

The format specification for reading an integer number is % wd where (%) sign indicates

conversion specification, w is the integer number for field width specification and d indicates

that the number is to be read in integer mode.

Example: scanf ("% 2d % 5d", & n1, &n2);

An input field may be skipped by specifying & in place of field width.

Example: scanf ("% 2d % * d % 6d", &n1, &n2);

Input of Character Strings

% ws or % wc can be used as the specification for reading character strings. The specifier %s

terminates reading a string at the encounter of blank space. Some versions of scanf() supports the

following conversion specification for strings.

% [characters] and % [^ characters]

The specification % [characters] means that only the characters specified within brackets

are permissible in the input string. If the input string contains any other character, the string

will be terminated at the first encounter of such a character.

The specification % [^character] does exactly the reverse, that is, character specified

after circumflex (^) are not permitted.

Example :

scanf(“ %1[YN]c ”, &ch);

Input for ch Only permitted ‘Y’ or ‘N’ single character.

Example :

scanf(“ %1[^YN]c ”, &ch);

Input for ch permitted all characters except ‘Y’ or ‘N’ single character.

Unformatted Console I /O - Function

Unformatted console I/O functions cannot control the format of reading and writing the

data. All the unformatted console -I/O functions are defined in stdio.h header file.

Character Input Function

1). getchar() function :-
 This is a un-formatted console Input function which is used to enter or

Input One character at a time from a standard Input device eg. Keyboard . In this the entered

character is echoed (display) on the screen and the use need to press Enter key.

eg. char alphabet ;

 alphabet = getchar() ;

2). getche() function :-
 This also comes in the unformatted console Input function which is used to

enter (input) One character at a time . In this , the entered character is echoed / displayed on

the screen but the user not need to press Enter key to submit the character . As the key is press,

it is accepted from the program.

eg. char alphabet ;

 alphabet = getche() ;

3). getch() function :-
 This is also unformatted console Input function which is used to enter one

character at a time . In this, the user need neither to press Enter key nor the character is echoed

on screen . It is used where the user do not want to show the Input.

eg. char alphabet ;

 alphabet = getch() ;

The main Difference between these functions are:

Function Wait for Enter Key? Display Character during

input, on Screen?

getch() No No

getche() No Yes

getchar() Yes Yes

Example: # include <conio.h>

 # include <stdio.h>

void main()

{

char c;
c = getchar(); // or c=getche(); or c=getch();

if (c == 'y' II c = = ‘Y’)
printf ("C is a character \n");

}

Character Output Function

putchar () :-

putchar is a macro defined as putc(c,stdout) putchar puts the character given by c on the output
stream stdout(console). It is use to print one character (at a time) on the screen at the current cursor
location.

syntax: putchar (variable_name);

Variable must be of character type.

eg.

 main()

 {

 char ch ;

 printf(" Enter a key ") ;

 ch = getch() ;

 printf(" \n You have enter character ") ;

 putchar(ch) ;

 }

putch() function :-

putch outputs the character c to the current text window. It is a text-mode function that performs
direct video output to the console.
eg.

 main()
 {
 char ch ;
 printf(" Enter a key ") ;
 ch = getch() ;
 printf(" \n You have enter character ") ;

 putch(ch) ;
 }

Character String Input Function

The gets() function is used to read a character entered on the keyboard and places them

at the address pointed to by its character pointer argument. Characters are entered until

the enter key is pressed.

Syntax: char * gets (char *a);

where “a” is the character array or character pointer.

Character String Output Functions

The puts() function writes its string argument to the screen followed by the newline.

Syntax: char * puts (const char * a);

puts() function takes less space then printf(). It is faster than printf(). It does not

output numbers or do format conversions as puts() outputs character string only.

Example:

main()

{

 char name[15] ;

 clrscr() ;

 puts(" Enter name of 15 Characters: ") ;

 gets(name) ; /* String Input */

 puts(" The name Entered is: ") ;

 puts(" name ") ; /* String Output */

 getch() ;

}

Output .

Enter name of 15 Characters: SABAB KHAN

 The name Entered is: SABAB KHAN

Preprocessor

The C preprocessor is a program that processes our source program before it is passed to

the compiler. Preprocessor commands (often known as directives) form what can almost

be considered a language within C language. We can certainly write C programs without

knowing anything about the preprocessor or its facilities.

Features of C Preprocessor

The preprocessor offers several features called preprocessor directives. Each of these

preprocessor directives begin with a ‘#’ symbol. The directives can be placed anywhere in

a program but are most often placed at the beginning of a program, before the first function

definition.

We would learn the following preprocessor directives here:

(a) Macro expansion

(b) File inclusion

(c) Conditional Compilation

(d) Miscellaneous directives

Macro Expansion (#define)

Have a look at the following program.

#define UPPER 25

main()
{
 int i ;

 for (i = 1 ; i <= UPPER ; i++)
 printf ("\n%d", i) ;

}

In this program instead of writing 25 in the for loop we are writing it in the form of UPPER,

which has already been defined before main() through the statement,

#define UPPER 25

This statement is called ‘macro definition’ or more commonly, just a ‘macro’. During

preprocessing, the preprocessor replaces every occurrence of UPPER in the program with

25. Here is another example of macro definition.

#define PI 3.1415

main()

{

float r = 6.25 ;

float area ;

area = PI * r * r ;

printf ("\nArea of circle = %f", area) ;
}

UPPER and PI in the above programs are often called ‘macro templates’, whereas, 25 and

3.1415 are called their corresponding ‘macro expansions’.

When we compile the program, before the source code passes to the compiler it is examined by the C
preprocessor for any macro definitions. When it sees the #define directive, it goes through the entire
program in search of the macro templates; wherever it finds one, it replaces the macro template with
the appropriate macro expansion. Only after this procedure has been completed is the program handed
over to the compiler.

Note that a macro template and its macro expansion are separated by blanks or tabs. A space between
and define is optional. Remember that a macro definition is never to be terminated by a semicolon.

Example :

#define AND &&

#define OR ||

main()
{

int f = 1, x = 4, y = 90 ;

if ((f < 5) AND (x <= 20 OR y <= 45))

printf ("\nYour PC will always work fine...") ;
else

printf ("\nIn front of the maintenance man") ;
}

A #define directive could be used to replace even an entire

C statement. This is shown below.

#define FOUND printf ("The Yankee Doodle Virus")

; main()

{
 char signature ;

 if (signature == 'Y')

 FOUND
 else
 printf ("Safe... as yet !") ;
}

Macros with Arguments

The macros that we have used so far are called simple macros.

Macros can have arguments, just as functions can. Here is an

example that illustrates this fact.

Example:

#define AREA(x) (3.14 * x * x)

main()
{
float r1 = 6.25, r2 = 2.5, a ;

a = AREA (r1) ;

printf ("\nArea of circle = %f", a) ;
a = AREA (r2) ;

printf ("\nArea of circle = %f", a) ;
}

Here’s the output of the program...

Area of circle = 122.656250

Area of circle = 19.625000

After the above source code has passed through the preprocessor, what the compiler gets to

work on will be this:

main()

{

float r1 = 6.25, r2 = 2.5, a ;

a = 3.14 * r1 *r1 ;

printf ("Area of circle = %f\n", a) ; a = 3.14 *r2 *

r2 ;
printf ("Area of circle = %f", a) ;
}

Here is another example of macros with arguments:

Example 1:

#define ISDIGIT(y) (y >= 48 && y <= 57)

main()
{
char ch ;

printf ("Enter any digit ") ;

scanf ("%c", &ch) ;

if (ISDIGIT (ch))

printf ("\nYou entered a digit") ;
else
printf ("\nIllegal input") ;

}

Example 2:

#define SQUARE(n) n * n
main()

{

int j ;

j= 64 / SQUARE (4) ;
printf ("j = %d", j) ;
}

The output of the above program would be:

j= 64

#undef Directive

On some occasions it may be desirable to cause a defined name to become ‘undefined’. This can

be accomplished by means of the #undef directive. In order to undefine a macro that has been

earlier #defined, the directive,

#undef macro template

can be used. Thus the statement,

#undef PENTIUM

would cause the definition of PENTIUM to be removed from the

system. All subsequent #ifdef PENTIUM statements would

evaluate to false. In practice seldom are you required to undefine a macro, but for some reason if you

are required to, then you know that there is something to fall back upon.

Macros versus Functions

In a macro call the preprocessor replaces the macro template with its macro expansion, in a

stupid, unthinking, literal way. As against this, in a function call the control is passed to a

function along with certain arguments, some calculations are performed in the function and a

useful value is returned back from the function.

If we use a macro hundred times in a program, the macro expansion goes into our source

code at hundred different places, thus increasing the program size. On the other hand, if a

function

is used, then even if it is called from hundred different places in the program, it would take

the same amount of space in the program.

But passing arguments to a function and getting back the returned value does take time and

would therefore slow down the program.

This gets avoided with macros since they have already been expanded and placed in the

source code before compilation.

File Inclusion (#include)

The second preprocessor directive is file inclusion. This directive causes one file to be included

in another. The preprocessor command for file inclusion looks like this:

#include "filename"

and it simply causes the entire contents of filename to be inserted into the source code at that

point in the program. Of course this presumes that the file being included is existing. It can be

used in two cases:

(a) If we have a very large program, the code is best divided into several different files,

 each containing a set of related functions. It is a good programming practice to keep

 different sections of a large program separate. These files are

 #include at the beginning of main program file.

(b) There are some functions and some macro definitions that we need almost in all

 programs that we write. These commonly needed functions and macro definitions can be

 stored in a file, and that file can be included in every program we write, which would add

 all the statements in this file to our program as if we have typed them in.

It is common for the files that are to be included to have a (.h) extension. This extension stands

for ‘header file’, possibly because it contains statements which when included go to the head of

your program.

Actually there exist two ways to write #include statement. These

are:

#include "filename"

#include <filename>

The meaning of each of these forms is given below:

#include "goto.c"

This command would look for the file goto.c in the current directory as well as the

specified list of directories as mentioned in the include search path that might have been

setup.

#include <goto.c>

This command would look for the file goto.c in the specified list of directories (Search path) only.

If you are using Turbo C/C++ compiler then the search path can be setup by selecting

‘Directories’ from the ‘Options’ menu. On doing this a dialog box appears. In this dialog box

against ‘Include Directories’ we can specify the search path. We can also specify

multiple include paths separated by ‘;’ (semicolon) as shown below:

c:\tc\lib ; c:\mylib ; d:\libfiles

The path can contain maximum of 127 characters. Both relative and absolute paths are

valid. For example ‘..\dir\incfiles’ is a valid path.

Program :

First create two programs

 prog1.h (header file) prog2.c (source file)

Execute prog2.c (ctrl + f9)

Output:

#include<stdio.h>

void display()

{

printf(“\nThis is prog1 header file\n”);

printf(“Welcome to display () function”);

}

void print(char *s)

{

 printf(“\n%s”,s);

}

#include<stdio.h>

#include “prog1.h” // include header file prog1

void main()

{

 clrscr();

 display(); // call display() of prog1.h

 print(“My Name is SABAB”); // call print()

 getch();

}

This is prog1 header file

Welcome to display () function

My Name is SABAB

UNIT-III

Control Statements

The control statements enable us to specify the order in which the various instructions in a
program are to be executed by the computer. They determine the flow of control in a
program.

There are four types of control statements in C. They are:

 Sequence Control Statements

 Decision Control Statements or Conditional Statement.

 Case Control Statement

 Repetition or Loop Control Statements
Sequence Control statements ensure that the instructions in the program are executed
in the same order in which they appear in the program.
Decision and Case Control statements allow the computer to take decision as to
which statement is to be executed next.

The Loop Control statement helps the computer to execute a group of statements
repeatedly.
Conditional Statement

C has two major decision-making statements.

 If_else statement

 Switch statement

If - else Statement


The if - else statement is a powerful decision-making tool. It allows the computer to evaluate
the expression. Depending on whether the value of expression is "True" or "False" certain
group of statements are executed. 

The syntax of if else statement is:

if (condition is true)

 statement 1;

 else

 statement 2; .

The condition following the keyword is always enclosed in parenthesis. If the condition
is true, statement in then part is executed, that is, statement 1 otherwise statement 2 in else
part is executed.

Example:
 #include<stdio.h>
 #include<conio.h>

 void main()
 {
 int N;
 clrscr();
 printf(“Enter the Number :”);
 scanf(“%d”,&N);

 if(N%2 == 0)
 printf(“ Given Number %d is EVEN “,N);
 else
 printf(“ Given Number %d is ODD “,N);

 getch();
 }

Output :
 Enter the Number: 5
 Given Number 5 is ODD

Nested If-Else Statement:

It is a conditional statement which is used when we want to check more than 1 conditions at a
time in a same program. The conditions are executed from top to bottom checking each condition
whether it meets the conditional criteria or not. If it found the condition is true then it executes
the block of associated statements of true part else it goes to next condition to execute.

Syntax:

if(condition 1) T F

{ if(condition 2)
 {
 Statements 1;
 }
 else T F
 Statements 2;
 }
}
else
{
 Statements3;
}

In above syntax, the condition is checked first. If it is true, then the program control flow goes
inside the braces and again checks the next condition. If it is true then it executes the block of
statements associated with it else executes else part.

Is
condition

true

Is
conditio
n1 true

Statemets 3

Statemets X

Statemets 2

Statemets 1

#include <stdio.h>
#include <conio.h>
void main()

{ int no;

 clrscr();

 printf("\n Enter Number :");

 scanf("%d",&no);

 if(no>0)
 {
 printf("\n\n Number is greater than 0 !");
 }
 else
 {
 if(no==0)
 {
 printf("\n\n It is 0 !");
 }
 else
 {
 printf("Number is less than 0 !");
 }
 }
 getch();
}

Output :

Enter Number : 0

It is 0!

else if Ladder

In C programming language the else if ladder is a way of putting multiple ifs together when
multipath decisions are involved. It is a one of the types of decision making and branching
statements. A multipath decision is a chain of if’s in which the statement associated with each
else is an if. The general form of else if ladder is as follows -

if (condition 1)

{

 statement - 1;

}

 else if (condtion 2)

 {

 statement - 2;

 }

 else if (condition n)

 {

 statement - n;

 }

 else

 {

 default statment;

 }

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top of the
ladder to downwards. As soon as a true condition is found, the statement associated with it is
executed and the control is transferred to the statement-x (skipping the rest of the ladder). When
all the n conditions become false, then the final else containing the default statement will be
executed.

Example :

#include <stdio.h>
#include <conio.h>
void main()
{

 int no;
 clrscr();
 printf("\n Enter Number :");
 scanf("%d",&no);
 if(no>0)
 {
 printf("\n Number is greater than 0 !");
 }
 else if(no==0)
 {
 printf("\n It is 0 !");
 }
 else
 {
 printf("Number is less than 0 !");
 }
 getch();
}

Output :

Enter Number : 5

Number is greater than 0 !

Switch case Statement :

This is a multiple or multiway branching decision making statement.

When we use nested if-else statement to check more than 1 conditions then the complexity of a
program increases in case of a lot of conditions. Thus, the program is difficult to read and
maintain. So to overcome this problem, C provides 'switch case'.
Switch case checks the value of an expression against a case values, if condition matches the case
values then the control is transferred to that point.

Syntax:

switch(expression)
{
 case expr1:
 statements;
 break;
 case expr2:
 statements;
 break;

 case exprn:
 statements;
 break;
 default:
 statements;
}

In above syntax, switch, case, break are keywords.
expr1, expr2 are known as 'case labels.'
Statements inside case expression need not to be closed in braces.
break statement causes an exit from switch statement.
default case is optional case. When neither any match found, it executes.

#include <stdio.h>
#include <conio.h>

void main()
{
 int no;
 clrscr();
 printf("\n Enter any number from 1 to 3 :");
 scanf("%d",&no);
 switch(no)
 {
 case 1:
 printf("\n\n It is 1 !");
 break;
 case 2:
 printf("\n\n It is 2 !");
 break;
 case 3:
 printf("\n\n It is 3 !");
 break;
 default:
 printf("\n\n Invalid number !");
 }
 getch();
}

Output :
Enter any number from 1 to 3 : 3

It is 3 !

* Rules for declaring switch case :

 The case label should be integer or character constant.
 Each compound statement of a switch case should contain break statement to exit from case.
 Case labels must end with (:) colon.

* Advantages of switch case :

 Easy to use.
 Easy to find out errors.
 Debugging is made easy in switch case.
 Complexity of a program is minimized.

Looping Statements / Iterative Statements :

A ‘ loop’ is a part of code of a program which is executed repeatedly.
A loop is used using condition. The repetition is done until condition becomes condition true.
A loop declaration and execution can be done in following ways.

o Initialize loop with declaring a variable.
o Check condition to start a loop
o Executing statements inside loop.
o Increment or decrement of value of a variable.

* Types of looping statements:
Basically, the types of looping statements depends on the condition checking mode. Condition
checking can be made in two ways as : Before loop and after loop. So, there are 2(two) types of
looping statements.

 Entry controlled loop
 Exit controlled loop

1. Entry controlled loop:

In such type of loop, the test condition is checked first before the loop is executed.
Some common examples of this looping statements are :

o while loop
o for loop

2. Exit controlled loop :

In such type of loop, the loop is executed first. Then condition is checked after block of statements

are executed. The loop executed atleat one time compulsarily.

Some common example of this looping statement is :

o do-while loop

For loop :

This is an entry controlled looping statement.

In this loop structure, more than one variable can be initialized. One of the most important feature

of this loop is that the three actions can be taken at a time like variable initialization, condition

checking and increment/decrement. The for loop can be more concise and flexible than that of

while and do-while loops.
Syntax:

for(counter initialization ; test-condition ; modify counter)
{
 statements;
}

In above syntax, the given three expressions are separated by ';' (Semicolon)

http://www.technoexam.com/c-language-lecture-study-notes-tutorials-material/do-while-loop.asp

 false

 true

Features :

o More concise
o Easy to use
o Highly flexible
o More than one variable can be initialized.
o More than one increments can be applied.
o More than two conditions can be used.

Example :

#include <stdio.h>
#include <conio.h>
void main()
{
 int a;
 clrscr();
 for(i=0; i<5; i++)
 {
 printf("MCMT !\t"); // 5 times
 }
 getch();
}

Output :

MCMT MCMT MCMT MCMT MCMT

Test

conditio

n

Execute body of loop

Counter initialization

Modify Counter

Terminate Loop

More About for Loop

The for loop in C has several capabilities that are not found in other loop constructs. More
than one variable can be initialized at a time in the for statement.

The Statement p = 1;

for (n = 0; n < 17; + + n)

 can be rewritten as for (p = 1, n = 0; n < 17; ++ n)

The increment section may also have more than one part as given in the following

example:

for (n = 1, m = 50; n < = m; n = n+1, m = m-j)

{
 p = m/n;

 printf ("%d %d %d\n", n, m, p):

}

While loop :
This is an entry controlled looping statement. It is used to repeat a block of statements until

condition becomes true.

Syntax:

while(condition)

{

 statements;

 increment/decrement;

}

In above syntax, the condition is checked first. If it is true, then the program control flow goes

inside the loop and executes the block of statements associated with it. At the end of loop increment

or decrement is done to change in variable value. This process continues until test condition

satisfies.

 False

 True

Test

Condition

Execute Body of Loop

Out of Loop

Program :

#include <stdio.h>
#include <conio.h>
void main()
{
 int a;
 clrscr();
 a=1;
 while(a<=5)
 {
 printf("MCMT \t");
 a+=1 // i.e. a = a + 1
 }
 getch();
}

Output : MCMT MCMT MCMT MCMT MCMT

Do-While loop :

This is an exit controlled looping statement.

Sometimes, there is need to execute a block of statements first then to check condition. At that

time such type of a loop is used. In this, block of statements are executed first and then condition

is checked.

Syntax:

do

{

 statements;

 (increment/decrement);

}while(condition);

In above syntax, the first the block of statements are executed. At the end of loop, while statement

is executed. If the resultant condition is true then program control goes to evaluate the body of a

loop once again. This process continues till condition becomes true. When it becomes false, then

the loop terminates.

Note: The while statement should be terminated with ; (semicolon).

 false

 true

Program :

#include <stdio.h>
#include <conio.h>
void main()
{
 int a;
 clrscr();
 a=1;
 do
 {
 printf("MCMT\t"); // 5 times
 a+=1; // i.e. a = a + 1
 }while(a<=5);
 getch();
}

Output : MCMT MCMT MCMT MCMT MCMT

Infinite loop :

A looping process, in general, includes the following four steps:

 Setting of a counter.

 Execution of the statements in the loop.

 Testing of a condition for loop execution.

 Incrementing the counter.

The test condition eventually transfers the control out of the loop. In case, due1 to

some reasons, if-it does not do so, the control sets up an infinite loop and the loop body is

Test

Condition

Execute Body of Loop

Out of Loop

executed over and over again. Such infinite loops should be avoided. Ctrl+C or

Ctrl+Break are used to terminate the program caught in an infinite loop. Two examples of

infinite loop are given below:

 Example :

 #include<stdio.h>

 void main()

 {

 int i=1;

 while(i<=10)

 {

 Printf(“ i= %d\n”,i);

 }

 }

This program will never terminate as variable i will always be less than 10. To get the

loop terminated, an increment operation (i + +) will be required in the loop.

Nested Loops :
Loops within loops are called nested loops. An overview of nested while, for and do .. while

loops is given below:

Nested while :

It is required when multiple conditions are to be tested. The syntax of nested while is:

while (condition 1)

 { ----------

while (condition 2)

{ ----------

while (condition n)

{ ----------

}

}

}

For example:

#include<stdio.h>

#include<conio.h>

void main()

{ int i = 1, N;

 clrscr();

 while(i<= 5)

 {

 N=1;

 while(N<=5)

 {

 printf(“ %d ” , N);

 }

printf(“ \n”);

 }

}

Ouput :
 1 2 3 4 5
 1 2 3 4 5

1 2 3 4 5
 1 2 3 4 5

1 2 3 4 5

Nested for :

It is used when multiple set of iterations are required. The syntax of nested for is:

for (; ;)

 { ----------

for (; ;)

{ ----------

for (; ;)

{ ----------

}

}

}

For example:

#include<stdio.h>
#include<conio.h>
void main()
{
 int i , N;
 clrscr();
 for(i=1 ; i<= 5 ; i++)
 {
 for(N=1 ;N<= 5 ; N++)
 {
 printf(“ %d ” , N);
 }
printf(“ \n”);
 }
 }

Ouput :
 1 2 3 4 5
 1 2 3 4 5

1 2 3 4 5
 1 2 3 4 5

1 2 3 4 5

The break Statement

The break statement is used to terminate loops or to exit from a switch. When break is
encountered inside any C loop, control automatically passes to the first statement after the
loop. It can be used within a while, a do-while, a for loop or a switch statement. The break
statement is written simply as break; without any embedded expression of statements.
Sometimes, it is necessary to exit immediately from a loop as soon as the condition is satisfied.
The statements after break statement are skipped.
Syntax :

 break;

Figure :

Example :

#include <stdio.h>
#include <conio.h>
void main()
{
 int i;
 clrscr();
 for(i=1; i<=20 ; i++)
 {
 if(i>5)
 break;
 printf("%d",i); // 5 times only
 }
printf(“ \nOut of loop”);
 getch();
}

Output :

12345
Out of loop

Continue Statement :

Sometimes, it is required to skip a part of a body of loop under specific conditions. So, C supports
'continue' statement to overcome this anomaly.

The working structure of 'continue' is similar as that of that break statement but difference is
that it cannot terminate the loop. It causes the loop to be continued with next iteration after
skipping statements in between. Continue statement simply skipps statements and continues
next iteration.

Syntax :

 continue;

Figure :

Example:

#include <stdio.h>
#include <conio.h>
void main()
{
 int i;
 clrscr();
 for(i=1; i<=10; i++)
 {
 if(i>=6 && i <=8)
 continue;
 printf("\t%d",i); // 6 to 8 is omitted
 }

 getch();
}

Output :

 1 2 3 4 5 9 10

The exit() Function

The exit() function is used to terminate the execution of 'C' program. It is a standard library
function and uses header file stdlib.h.
The general form of exit() function is

 exit (int status);

The difference between break and exit() is that former terminates the execution of
loop in with it is written while exit() terminates the execution of program itself.

The status (in the general form of exit) is a value returned to the operation system
after the termination. of the program.

The value zero “0” indicates that the termination is normal while value one “1” (Non-Zero)
indicates
different types of errors.

Example :

#include <stdio.h>
#include <conio.h>
void main()
{
 int i;
 clrscr();
 for(i=1; ; i++)
 {
 if(i>5)
 exit(0);
 printf("%d",i); // 5 times only
 }
printf(“ \nOut of loop”); // control will not reached here
 getch();
}

Output :
 12345

The goto Statement

C supports the goto statement to branch unconditionally from one point to another in the

program. A goto statement breaks the normal sequential execution of the program.

The goto requires a label in order to identify the place where the branch is to be made.

A label is any valid variable name, and must be followed by a colon. The label is placed

immediately before the statement where the control is to be transferred.

It is a well known as “jumping statement”. It is useful to provide branching within a loop.

When the loops are deeply nested at that if an error occurs then it is difficult to get exited from

such loops. Simple break statement cannot work here properly. In this situation, goto statement

is used.

The general forms of goto and label statements are:

Figure :

Example :

#include <stdio.h>
#include <conio.h>
void main()
{
 int i=1, j;
 clrscr();
 while(i<=3)
 {
 for(j=1; j<=3; j++)
 {
 printf(" I=%d \t J=%d \n", i , j);
 if(j==2)
 goto stop;
 }
 i = i + 1;
 }

 stop: printf("\n Exited !");
 getch();
}

Output :

I=1 J=1

I=1 J=2

Exited!

UNIT-IV

Basics of Programming

Computer programming

Designing and writing computer programs, or sequences of instructions to be executed by a

computer. A computer is able to perform useful tasks only by executing computer programs. A

programming language or a computer language is a specialized language for expressing the

instructions in a computer program.

Problem Definition

It is the first and most important step in determining the information needs.

Information needs of software can be determined by-

1) Studying the existing System

2) Using questionnaires

3) Suggesting interpretation of information needs with users

Using any of these steps first of all the requirements of determines.

This phase in the product life cycle encompasses two different activities: Concept Development and

Requirements Identification. In Concept Development, we gather and refine ideas and set

cohesive product goals. Requirements Identification then further clarifies the goals by specifying

the needs and functionality of the product.

Problem solving

In this stage, the programmer gains a full understanding of the problem that the computer program
under development is supposed to solve, and devises a step-by step procedure (an algorithm)
that, when followed, will solve the problem.

Problems are the undesirable situations that prevent any software from fully achieving its
objectives. Problem dearly defined in terms of goals and
objectives helps largely in problem solving. Steps involved in problem solving methodology
are shown in the figure.

Steps in Problem Solving

Some problem-solving techniques

 Trial-and-error (also called guess and check)

 Brainstorming

 divide and conquer

 Trial and Error To Solve Problems

Some complex problems can be solved by a technique that is called trial and error. Trial and error

is typically good for problems where you have multiple chances to get the correct solution.

However, this is not a good technique for problems that don’t give you multiple chances to find

a solution.

Become aware of the problem

Gather information to increase the

understanding of problem situation

Define the problem in terms of

objectives, variables, and their

interaction

Develop evaluation criteria Develop alternative solutions

Choose the most appropriate solution

Implement solution

Monitor and control the

implementation

An example of situations where you wouldn’t want to use trial and error are diffusing a bomb or

performing an operation on a patient. In these situations, making an error can lead to disaster.

Trial and error is used best when it is applied to situations that give your large amounts of time

and safety to come up with a solution.

In addition to this, trial and error is also a great way to gain knowledge. Basically, a person that

uses the trial and error method will try to a method to see if it is a good solution. If it is not a

good solution, they try another option. If the method works, the person using it has acquired the

correct solution to a problem.

 Brainstorming

Brainstorming as a technique was first introduced by Alex Osborne in the 1930s. It is a method

used in groups in order to support creative problem-solving, the generation of new ideas and

greater acceptance of proposed solutions.

Brainstorming works by focusing on a problem, and then intentionally coming up with as many

solutions as possible and by pushing the ideas as far as possible. One of the reasons it is so

effective is that the brainstormers not only come up with new ideas in a session, but

also inspire from associations with other people's ideas by developing and refining them.

Benefits of brainstorming

The benefits of a well-organized brainstorming session are numerous. They include:

(a) Solutions can be found rapidly and economically;

(b) Results and ways of problem-solving that are new and unexpected

(c) A wider picture of the problem or issue can be obtained;

(d) The atmosphere within the team is more open;

(e) The team shares responsibility for the problem;

(f) Responsibility for the outcome is shared;

(g) The implementation process is facilitated by the fact that staff shared in the

decision-making process.

 Divide-and-conquer

Divide-and-conquer is a top-down technique for designing algorithms that consists of dividing

the problem into smaller subproblems hoping that the solutions of the subproblems are easier

to find and then composing the partial solutions into the solution of the original problem.

A divide and conquer algorithm works by recursively breaking down a problem into two or more

sub-problems of the same or related type, until these become simple enough to be solved

directly.

 divide-and-conquer paradigm consists of following major phases:

Breaking the problem into several sub-problems that are similar to the original problem but

smaller in size, Solve the sub-problem recursively (successively and independently), and then

Combine these solutions to subproblems to create a solution to the original problem.

Pseudocode

Pseudocode is an informal high-level description of the operating principle of a computer

program or other algorithm.

Pseudocode (pronounced SOO-doh-kohd) is a detailed yet readable description of what a computer

program or algorithm must do, expressed in a formally-styled natural language rather than in a

programming language. Pseudocode is sometimes used as a detailed step in the process of

developing a program. It allows designers or lead programmers to express the design in great detail

and provides programmers a detailed template for the next step of writing code in a specific

programming language.

three basic constructs for flow of control are sufficient to implement any "proper" algorithm.

 SEQUENCE is a linear progression where one task is performed sequentially after

another.

 WHILE is a loop (repetition) with a simple conditional test at its beginning.

 IF-THEN-ELSE is a decision (selection) in which a choice is made between two

alternative courses of action.

1-SEQUENCE

Sequential control is indicated by writing one action after another, each action on a line by itself,

and all actions aligned with the same indent. The actions are performed in the sequence (top to

bottom) that they are written.

Example

READ height of rectangle

READ width of rectangle

COMPUTE area as height times width

2-IF-THEN-ELSE

Binary choice on a given Boolean condition is indicated by the use of four keywords: IF, THEN,

ELSE, and ENDIF. The general form is:

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithm
http://searchsoa.techtarget.com/definition/template

IF condition THEN

 sequence 1

ELSE

 sequence 2

ENDIF

The ELSE keyword and "sequence 2" are optional. If the condition is true, sequence 1 is performed,

otherwise sequence 2 is performed.

Example

IF HoursWorked > NormalMax THEN
Display overtime message

ELSE
Display regular time message

ENDIF

3- WHILE

The WHILE construct is used to specify a loop with a test at the top. The beginning and

ending of the loop are indicated by two keywords WHILE and ENDWHILE. The

general form is:

WHILE condition

sequence

ENDWHILE

The loop is entered only if the condition is true. The "sequence" is performed for each

iteration. At the conclusion of each iteration, the condition is evaluated and the loop

continues as long as the condition is true.

Example

get a number

set our initial count to 0

while our number is greater than 1

 divide the number by 2

 increase our count by 1

end

Big O notation

Big O notation is used in Computer Science to describe the performance or complexity of an

algorithm. Big O specifically describes the worst-case scenario, and can be used to describe the

execution time required or the space used (e.g. in memory or on disk) by an algorithm.

below are some common orders of growth along with descriptions and examples where possible.

O(1)

O(1) describes an algorithm that will always execute in the same time (or space) regardless of the

size of the input data set.

void func()

{

Print “Hello!”

}

O(N)

O(N) describes an algorithm whose performance will grow linearly and in direct proportion to the

size of the input data set.

The example below also demonstrates how Big O favors the worst-case performance scenario; a

matching string could be found during any iteration of the for loop and the function would return

early, but Big O notation will always assume the upper limit where the algorithm will perform the

maximum number of iterations.

bool ContainsValue(char[] elements, string value)

{

 foreach (var x in elements)

 {

 if (x == value) return true;

 }

 return false;

}

O(N2)

O(N
2
) represents an algorithm whose performance is directly proportional to the square of the size

of the input data set. This is common with algorithms that involve nested iterations over the data

set. Deeper nested iterations will result in O(N
3
), O(N

4
) etc.

bool ContainsDuplicates(IList<string> elements)

{

 for (var outer = 0; outer < elements.Count; outer++)

 {

 for (var inner = 0; inner < elements.Count; inner++)

 {

 // Don't compare with self

 if (outer == inner) continue;

 if (elements[outer] == elements[inner]) return true;

 }

 }

 return false;

}

O(2N)

O(2N) denotes an algorithm whose growth doubles with each additon to the input data set. The

growth curve of an O(2N) function is exponential - starting off very shallow, then rising

meteorically. An example of an O(2N) function is the recursive calculation of Fibonacci numbers:

int Fibonacci(int number)

{

 if (number <= 1)

 return number;

 return Fibonacci(number - 2) + Fibonacci(number - 1);

}

Logarithm

The most common attributes of logarithmic running-time function are that:

 the choice of the next element on which to perform some action is one of several

possibilities, and only one will need to be chosen.

Or

the elements on which the action is performed are digits of n

 O(log n): Given a person's name, find the phone number by picking a random point

about halfway through the part of the book you haven't searched yet, then checking to

see whether the person's name is at that point. Then repeat the process about halfway

through the part of the book where the person's name lies. (This is a binary search for a

person's name.

 O(n): Find all people whose phone numbers contain the digit "5".

 O(n): Given a phone number, find the person or business with that number.

 O(n log n): There was a mix-up at the printer's office, and our phone book had all its

pages inserted in a random order. Fix the ordering so that it's correct by looking at the

first name on each page and then putting that page in the appropriate spot in a new,

empty phone book.

Algorithms

The concept of an algorithm is one of the basic concepts in mathematics. An algorithm is a

finite set of rules, which gives a sequence of operations to solve a specific problem.
Example: [Making a Good Cup of Tea]

 Step 1. Take a beaker and place it on a burner (stove)

Step 2. Add ½ Cup water and ½ Cup Milk

Step 3. Heat it to 100deg. BOILING point

Step 4. Add Tea powder or leaves.

Step 5. Let boil for some time.

Step 6. Add one tea spoon sugar and Extra Items which u want.

Step 7. Let boils for some time

Step 8. Filter it and Serve in a Cup (your tea is ready)

The word "algorithm" originates from the Arabic word algorism which has been derived
from the name of a famous Arabic mathematician Abu Jajar Mohammed ibn Musa AI
Khwarizrni (AD 825) who was the first to suggest a mechanical method to add two numbers
represented in the Hindu numeral system.

Properties of an Algorithm
Algorithm is a step-by-step problem solving procedure that can be Carried out by a computer. The

essential properties of an algorithm are:

Finiteness: An algorithm should terminate after a finite number of steps, that is,

 when it is mechanically executed, it should come to a stop after executing a
finite number of. Assignment, decision and repetitive steps.

Definiteness: An algorithm should be simple. Each step of the algorithm should
 be precisely defined, that is, the steps must be unambiguous so that the
computer understands them properly.

Generality: An algorithm should be complete in itself, that is, it should be able-to
 solve all problems of a particular type.

Effectiveness: All the operations used in the algorithm should be basic and capable
 of being performed mechanically.

Input-output: An algorithm should take certain precise inputs, or initial data,
and the outputs should be generated in the intermediate as well as the steps of the algorithm.

Algorithm Logic

 Program analysts have found that algorithms developed using three basic components are
easier to follow. These three components which are considered as standard units to control
the flow of information processing and are used to construct algorithms are:

Sequential Flow
 In a sequential component, steps are taken in an explicitly prescribed sequence.
For example,

INPUT R, H, D

G = R*H

P = G - D

Update record

Print cheque

Conditional Flow
Algorithm involves a decision to be made based on a condition, the flow is said to be

Conditional, To make a decision, a condition is tested. If the condition is true, then one
is taken; if false, then the other. For example,

INPUT R, H, D

G = R*H

P = G - D

If P is positive,

 then print a check.

 Upate record.

Repetitive Flow

The Other basic-variation in algorithm flow deals with repetition of steps. In this case, if the
Condition is true, then the steps in the procedure are taken, after which flow is back to the condition
for a possible repetition. As long as the condition remains true, this path is followed.

Step 1 A=1

Step 2 Print A

Step 3 A=A+1

Step 4 If A < = 10 goto Step 2

Step 5 End

Examples

Example 1: Addition and multiplication of two numbers

 Step 1 Input values for A and B

 Step 2 Add B to A and store in 'SUM

 Step 3 Multiply B with A and store in MUL

 Step 4 Display value of SUM and MUL

 Step 5 End.

Example 2: Check for even or odd numbers

 Step 1 Accept value in variable NUM

 Step 2 Divide NUM by 2 and store remainder in REM

 Step 3 If REM is zero

Display "Number is even"

 Else

 Display "Number is odd"

 Step 4 : End.

Example 3: Swapping two variables with the help of the third variable

 Step 1 Input values in A and B.

 Step 2 Let variable T = A

 Step 3 Let A = B

 Step 4 Let B. = T

 Step 5 Display A and

 Step 6 End.

Example 4: Swapping two variables without using the third variable

Step 1 Input values ih A and B.

Step 2 LatA = A+B

Step 3 Let B = A-B

Step 4 Let A = A-B

Step 5 Display A and B

Step 6 End.

Example 5: To calculate the percentage of marks obtained by the student in an examination.
 the problem, maximum marks and marks obtained are given. The required result is

 percentage of marks and the formula used is: '

 marks obtained

% of marks =-------- * 100
max. marks

 Step 1 Read name, marks obtained & maxes. Marks.

 Step 2 Divide marks obtained by max. marks and store it in Per:

 Step 3 multiply Per. by 100 to get percentage.

 Step 4 Writte name and .percentage.

 Step 5 Stop.
Example 6: Check for prime number

 Step 1 Input a value in NUM

 Step 2 If NUM is 0, 1, 2 or 3 go to step 8

 Step 3 Let variable E = NUM/2 and I = '2

 Step 4 Store remainder of NUM/I in REM

 Step 5 If REM = 0 go to step 9.

 Step 6 I = 1+1

 Step 7 If I < = E go to step 4

 Step 8 Display "Number is prime": go to step 10

 Step 9 Display "Number is Not prime"

 Step 10 End

Example 7: Summation of a set of numbers

 Step 1 Input total number of variables, for summation in N

 Step 2 Let Sum = 0, I = 1

 Step 3 Input a number in NUM

 Step 4 SUM = SUM + NUM

 Step 5 I = I + 1

 Step 6 If I <= N go to step 3

 Step 7 Display SUM

 Step 8 End.

Example 8: Display even numbers from 0-50

 Step 1 Let I = 0

Step 2 If remainder of l/2 is not zero go to step 4

 Step 3 Display I: go to step 6

 Step 4 I = I + 1

 Step 5 If I <= 50 go to step 2

 Step 6 End.

Example 9: Factorial computation

 Step 1 Input value in N

 Step 2 Let FACT = 1

 Step 3 FACT = FACT * N

 Step 4 N = N-1

 Step 5 If N > 1 go to step 3

 Step 6 Display value of FACT

 Step 7 End.

Example 10: Fibonacci series generation

 Step 1 Input the last term of series in N

 Step 2 Let A=0, B=1 and X=3

 Step 3 Display A and B

 Step 4 Let C = A+B

 Step 5 Display C

 Step 6 Let A = B and B = C

 Step 7 X = X+ 1

 Step 8 if X<= N go to step 4

 Step 9 End.

Example 11: Reversing digits of an integer

 Step 1 Input a value in NUM

 Step 2 Let REV = 0,

 Step 3 Store. remainder of NUM/10 in Rem

 Step 4 REV = REV * 10 + REM

 Step 5 NUM = (integer) NUM/10

 Step 6 If NUM > 0 go to step 3.

 Step 7 Display REV

 Step 8 End.

Example 12: Conversion of decimal base number to binary

 Step 1 Input number in DECI

 Step 2 Let BBASE = 0 and I = 0

 Step 3 Store remainder of DECI/2 in REM

 Step 4 BBASE = BBASE + REM * (10 power I)

 Step 5 l = l + 1

 Step 6 DECI = (Integer) DECI/2

 Step 7 If DECI != 0 go to step 3

 Step 8 Display BBASE

 Step 9 End.

FLOWCHART

A flowchart is a diagrammatic representation that illustrates the sequence of operations

to be performed to get the solution of a problem. Flowcharts are generally drawn in

the early stages of formulating computer solutions. Flowcharts facilitate

communication between programmers and business people.

Once the flowchart is drawn, it becomes easy to write the program in any high level

language.

It is a type of diagram that represents an algorithm or process.

Advantages of flowchart:-

1. It provides an easy way of communication because any other person besides the programmer can

understand the way they are represented.

2. It represents the data flow.

3. It provides a clear overview of the entire program and problem and solution.

4. It checks the accuracy in logic flow.

5. It documents the steps followed in an algorithm.

6. It provides the facility for coding.

Symbols for drawing Flowchart

START / END

INPUT / OUTPUT BOX

PROCESSING BOX

DECISION BOX

FLOW-LINE

 CONNECTOR

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Process_%28science%29

The following are some guidelines in flowcharting:

a. In drawing a proper flowchart, all necessary requirements should be listed out in logical order.

b. The flowchart should be clear, neat and easy to follow. There should not be any room for

ambiguity in understanding the flowchart.

c. The usual direction of the flow of a procedure or system is from left to right or top to bottom.

d. Only one flow line should come out from a process symbol.

 or

e. Only one flow line should enter a decision symbol, but two or three flow lines, one for each
possible answer, should leave the decision symbol.

Example 1: Draw a flowchart to find the sum of first 50 natural numbers.

Example 2: Draw a flowchart to find the largest of three numbers A,B, and C.

 Example 3: Draw a flowchart for computing factorial N (N!)

 Where N! = 1 ´ 2 ´ 3 ´ …… N.

Program
Program is a set of computer understandable instructions to solve a computational problem. The

specification of the sequence of computational steps in a particular programming language is

termed as a program.

Programming
The task of developing programs is called programming and the person engaged in programming

activity is called a programmer.

System Design Techniques

 TOP Down Design

The top down design approach is based on the fact that large problems become more

manageable if they are divided into a number of smaller and simpler tasks which can be

tackled separately.

Top down design approach is performed in a special way. The main program is written first. It is

tested before sub programs are written. After the main program is written and checked, each

module is written and tested in turn.

Bottom-Up Design

The pure bottom up approach is generally not recommended because it is difficult to anticipate

which low-level subroutines will be needed for any particular program. In the bottom up

approach it is usually assumed that the basic routines created will be general enough to be used

more than once. Using the subroutines, to construct a program, save repeating the same lines of

code by re-using it.

Programming Techniques

Linear programming

Linear program is a method for straight forward programming in a sequential manner. This type of

programming does not involve any decision making. General model of these linear

programs is:

 • Read a data value.

 • Compute an intermediate result.

 • Use the intermediate result to compute the desired answer.

 • Print the answer.

 • Stop.

Structured programming

One of the most versatile properties of a digital computer is that it can make a "decision",

thus creating a branching point. If branching and looping can be used, then much more complex

iterative algorithms can be written, which in-turn results in more complex programs. This

technique for writing such programs are referred to as Structured Programming.

Advantages of Structured programming

 Decreases the complexity of the program by breaking it down into smaller
 logical units. .

 Allow several programmers to code simultaneously.

 Allows common functions to be written once and then used in all the programs

needing it.

 Decreases debugging time, because modules make it easier to isolate errors.

 Modification to single modules do not affect the rest of the program.

Computer Programming Languages

Computer does not understand natural language because it is an electronic device which works on

the instructions provided by the user. It is required to provide the instructions in some computer

understandable language. Such a computer understandable language is

known as programming language.

Types of Programming Languages

Types of programming languages can be easily explained by the following chart.

 Machine Language (1940 – 1950) Procedural Language (1958 - 1985)

 Assembly Language (1950-1958) 4GLs (1985 - 0nwards)

 Visual/Graphics Language (1990-0nwards)

Programming languages

Low-level language

High-level language

Machine-Level Language (1st Generation)

Computer can understand binary codes (1, 0) only: So the instructions given to the computer

can only be in 1 or o. The language which contains binary codes is called machine-level

language.

Advantages

 Machine-level instructions are directly executable.

 Machine-level language makes most efficient use of computer system resources

 like storage, and register.

 Machine language instructions can be used to manipulate individual bits.

Disadvantages

 As machine-Level languages are device dependent, the programs are not portable

from one computer to another.

 Programming in machine language usually results in poor programmer productivity.

 Programs in machine language are more error prone and difficult to debug.

 Computer storage locations must be addressed directly, not symbolically.

Assembly Language (2nd Generation)


Assembly languages are' also known as second-generation languages, These Languages

substitute alphabetic symbols for the binary codes of machine language.

Advantages

 Assembly language is easier to use than machine language.

 An assembler is useful for detecting programming errors.

 Programmers do not have to know the absolute addresses of data items.

 Assembly languages encourage modular programming.

Disadvantages

 Assembly Language programs are not directly executable.

 Assembly languages are machine dependent and, therefore, not portable from

 one machine to another.

 Programming in assembly language requires a higher level of programming skill.

High-Level Languages (3rd Generation)

These are the third-generation languages. These are procedure-oriented languages and
are machine independent Programs are written in English like statements. As high-level
languages are not directly executable, translators (compilers and interpreters) are used to
convert them in machine language equivalent.

Advantages

 These are easier to learn than assembly language.

 Less time is required to write programs.

 They provide better documentation.

 They are easier to maintain.

 They have an extensive vocabulary.

 Libraries of subroutines can be incorporated and used in many other programs.

 Programs written in high-level languages are easier to debug because translators

 display all the errors with proper error messages at the time of translation.

4GLs (Fourth-Generation Programming Languages)

4GLs were developed in late 1970s and early 1980s. They concentrate on what is to be

accomplished rather than how it is to be accomplished. 4GLs facilitate interactive coding in form

of an on-screen menu choice to formulate an enquiry or define a task.

Assembler

An assembler is a program which is used to translate an assembly language program

into its machine-level language equivalent. The program in assembly language is termed as

source code and its machine language equivalent is called object program.

Once the object program is created, it is transferred into the computer's primary

memory using the System Loader for execute program.

Compiler

Compilers are System program that takes high-level language program (source code) as input and

produce machine-level language program (object code) as output. Compiler allocates addresses

to all variables and statements. It also tabulates a list of programming errors

found during compilation.

Interpreter

It is also used for translating high-level language program into machine-level language. The

main difference between compiler and interpreter is that compiler translates entire program

first and then produces the listing of errors. While the interpreters perform line by line

translation. As soon as the error is encountered, interpretation process stops. Due to line-

-line translation, interpreters are slower than compilers. The most well-known interpreter-

based language is BASIC.

UNIT-V

Basic Programs in C Language

Addition/Subtraction/Multiplication of Integers

#include <stdio.h>

int main()
{
 int first, second, add, subtract, multiply;

 printf("Enter two integers\n");
 scanf("%d%d", &first, &second);

 add = first + second;
 subtract = first - second;
 multiply = first * second;

 printf("Sum = %d\n",add);
 printf("Difference = %d\n",subtract);
 printf("Multiplication = %d\n",multiply);

 return 0;
}

Determine the number is +ive or -ive
#include <stdio.h>
int main()
{
 double number;

 printf("Enter a number: ");
 scanf("%lf", &number);

 if (number <= 0.0)
 {
 if (number == 0.0)
 printf("You entered 0.");
 else
 printf("You entered a negative number.");
 }
 else
 printf("You entered a positive number.");
 return 0;
}

Determine number is Even or Odd

#include <stdio.h>
int main()
{
 int n;

 printf("Enter an integer\n");
 scanf("%d", &n);

 if (n%2 == 0)
 printf("Even\n");
 else
 printf("Odd\n");

 return 0;
}

Greatest between two numbers
#include <stdio.h>

int main()
{
 int num1, num2;

 /*
 * Reads any two integer values from user
 */
 printf("Enter any two numbers:\n");
 scanf("%d %d", &num1, &num2);

 /*
 * Check if num1 > num2 or not and prints the maximum
 */
 if(n1 > n2)
 {
 printf("%d is maximum", num1);
 }
 else
 {
 printf("%d is maximum", num2);
 }

 return 0;
}

Greatest between three numbers

#include <stdio.h>
int main()
{
 int n1, n2, n3;

 printf("Enter three numbers: ");
 scanf("%d %d %d", &n1, &n2, &n3);

 if(n1>=n2 && n1>=n3)
 printf("%d is the largest number.", n1);

 if(n2>=n1 && n2>=n3)
 printf("%d is the largest number.", n2);

 if(n3>=n1 && n3>=n2)
 printf("%d is the largest number.", n3);

 return 0;
}

Sum of first n numbers

#include <stdio.h>
int main()
{
 int n, i, sum = 0;

 printf("Enter a positive integer: ");
 scanf("%d",&n);

 for(i=1; i <= n; ++i)
 {
 sum += i; // sum = sum+i;
 }

 printf("Sum = %d",sum);

 return 0;
}

Sum of given n numbers

#include <stdio.h>

int main()
{
 int n, sum = 0, c, value;

 printf("Enter the number of integers you want to add\n");
 scanf("%d", &n);

 printf("Enter %d integers\n",n);

 for (c = 1; c <= n; c++)
 {
 scanf("%d", &value);

 sum = sum + value;
 }

 printf("Sum of entered integers = %d\n",sum);

 return 0;
}

Digit Reversing
#include <stdio.h>

int main()
{
 int n, reverse = 0;

 printf("Enter a number to reverse\n");
 scanf("%d", &n);

 while (n != 0)
 {
 reverse = reverse * 10;
 reverse = reverse + n%10;
 n = n/10;
 }

 printf("Reverse of entered number is = %d\n", reverse);

 return 0;
}

Table generation of n

#include <stdio.h>
int main()
{
 int n, i;

 printf("Enter an integer: ");
 scanf("%d",&n);

 for(i=1; i<=10; ++i)
 {
 printf("%d * %d = %d \n", n, i, n*i);
 }

 return 0;
}

Program to calculate ab

#include<stdio.h>

#include<conio.h>

void main()

{

 int a,b,i,pow;

 clrscr();

 printf("Enter value of a: ");

 scanf("%d",&a);

 printf("Enter value of b: ");

 scanf("%d",&b);

 pow=1;

 for(i=1;i<=b;i++)

 {

 pow=pow*a;

 }

 printf("a(power)b = %d",pow);

 getch();

}

Pascal Triangle
#include <stdio.h>
 long factorial(int);
int main()
{
 int i, n, c;

 printf("Enter the number of rows you wish to see in pascal triangle\n");
 scanf("%d",&n);

 for (i = 0; i < n; i++)
 {
 for (c = 0; c <= (n - i - 2); c++)
 printf(" ");

 for (c = 0 ; c <= i; c++)
 printf("%ld ",factorial(i)/(factorial(c)*factorial(i-c)));

 printf("\n");
 }

 return 0;
}

long factorial(int n)
{

 int c;
 long result = 1;

 for (c = 1; c <= n; c++)
 result = result*c;

 return result;
}

Swapping in two numbers
#include <stdio.h>
int main()
{
 int x, y, temp;
 printf("Enter the value of x and y\n");
 scanf("%d%d", &x, &y);
 printf("Before Swapping\nx = %d\ny = %d\n",x,y);
 temp = x;
 x = y;
 y = temp;
 printf("After Swapping\nx = %d\ny = %d\n",x,y);
 return 0;
}

Swapping in two numbers without using third variables

#include <stdio.h>
int main()
{
 int a, b;
 printf("Enter two integers to swap\n");
 scanf("%d%d", &a, &b);
 a = a + b;
 b = a - b;
 a = a - b;
 printf("a = %d\nb = %d\n",a,b);
 return 0;
}

C program to find nCr and nPr using function
#include <stdio.h>

long factorial(int);
long find_ncr(int, int);
long find_npr(int, int);

int main()
{
 int n, r;
 long ncr, npr;
 printf("Enter the value of n and r\n");

 scanf("%d%d",&n,&r);
 ncr = find_ncr(n, r);
 npr = find_npr(n, r);
 printf("%dC%d = %ld\n", n, r, ncr);
 printf("%dP%d = %ld\n", n, r, npr);
 return 0;
}
long find_ncr(int n, int r) {
 long result;
 result = factorial(n)/(factorial(r)*factorial(n-r));
 return result;
}

long find_npr(int n, int r) {
 long result;

 result = factorial(n)/factorial(n-r);

 return result;
}

long factorial(int n) {
 int c;
 long result = 1;

 for (c = 1; c <= n; c++)
 result = result*c;

 return result;
}

Integer Division of Numbers

#include <stdio.h>

int main()
{
 int first, second;
 float divide;
 printf("Enter two integers\n");
 scanf("%d%d", &first, &second);
 divide = first / (float)second; //typecasting
 printf("Division = %.2f\n",divide);
return 0;
}
Factorial
#include <stdio.h>

int main()
{

 int c, n, fact = 1;

 printf("Enter a number to calculate it's factorial\n");
 scanf("%d", &n);

 for (c = 1; c <= n; c++)
 fact = fact * c;

 printf("Factorial of %d = %d\n", n, fact);

 return 0;
}

Prime number program in C
#include<stdio.h>

int main()
{
 int n, i = 3, count, c;
 printf("Enter the number of prime numbers required\n");
 scanf("%d",&n);

 if (n >= 1)
 {
 printf("First %d prime numbers are :\n",n);
 printf("2\n");
 }

 for (count = 2 ; count <= n ;)
 {
 for (c = 2 ; c <= i - 1 ; c++)
 {
 if (i%c == 0)
 break;
 }
 if (c == i)
 {
 printf("%d\n",i);
 count++;
 }
 i++;
 }
 return 0;
}

Program to calculate GCD And LCM

#include <stdio.h>

int main() {
 int a, b, x, y, t, gcd, lcm;

 printf("Enter two integers\n");
 scanf("%d%d", &x, &y);
 a = x;
 b = y;
 while (b != 0) {
 t = b;
 b = a % b;
 a = t;
 }
 gcd = a;
 lcm = (x*y)/gcd;
 printf("Greatest common divisor of %d and %d = %d\n", x, y, gcd);
 printf("Least common multiple of %d and %d = %d\n", x, y, lcm);
 return 0;
}

Factors of a number
#include <stdio.h>
int main()
{
 int number,i;

 printf("Enter a positive integer: ");
 scanf("%d",&number);
 printf("Factors of %d are: ", number);

 for(i=1; i <= number; ++i)
 {
 if (number%i == 0)
 {
 printf("%d ",i);
 }
 }

 return 0;
}

Sine Series

include <stdio.h>
include <conio.h>
include <math.h>
void main()
{
 int i, n ;
 float x, val, sum, t ;
 clrscr() ;
 printf("Enter the value for x : ") ;
 scanf("%f", &x) ;
 printf("\nEnter the value for n : ") ;

 scanf("%d", &n) ;
 val = x ;
 x = x * 3.14159 / 180 ;
 t = x ;
 sum = x ;
 for(i = 1 ; i < n + 1 ; i++)
 {
 t = (t * pow((double) (-1), (double) (2 * i - 1)) *
 x * x) / (2 * i * (2 * i + 1)) ;
 sum = sum + t ;
 }
 printf("\nSine value of %f is : %8.4f", val, sum) ;
 getch() ;
}

Output of above program is

Enter the value for x : 30
Enter the value for n : 20
Sine value of 30.000000 is : 0.5000

Cosine Series

include <stdio.h>
include <conio.h>
include <math.h>
void main()
{
 int i, n ;
 float x, val, sum = 1, t = 1 ;
 clrscr() ;
 printf("Enter the value for x : ") ;
 scanf("%f", &x) ;
 printf("\nEnter the value for n : ") ;
 scanf("%d", &n) ;
 val = x ;
 x = x * 3.14159 / 180 ;
 for(i = 1 ; i < n + 1 ; i++)
 {
 t = t * pow((double) (-1), (double) (2 * i - 1)) *
 x * x / (2 * i * (2 * i - 1)) ;
 sum = sum + t ;
 }
 printf("\nCosine value of %f is : %8.4f", val, sum) ;
 getch() ;
}

Output of above program is :
Enter the value for x : 60
Enter the value for n : 20
Cosine value of 60.000000 is : 0.5000

UNIT-VI

Introduction to Functions

Functions are the C building blocks where every program activity occurs. It is a self contained

program segment that carries out some specific, well-defined task. Every C program must

have a function. One of the function must be main().

C functions can be classified into two categories.

• Library functions Predefined in the standard library of C. Need is
just to include the library.

• User defined functions: It has to be-developed by the user at the time of

program writing.

Need of user Defined Functions

If a program is divided into functional parts, then each part may be independently coded
and later combined into a single unit. This approach clearly results in a number of advantages.

 Length of program can be reduced by using function.
 Reusability of function increases.
 It is easy to use.

 Debugging is more suitable (easier) for programs.
 It is easy to understand the actual logic of a program.
 Highly suited in case of large programs.
 By using functions in a program, it is possible to construct modular and structured

programs.

Function Declaration and Prototypes
Before defining the function, it is appropriate to declare the function along with its prototype.

In function prototype, the return value of function, type, and number of arguments are

specified. The declaration of all functions statement should be first statements in main() or we

can also declare globally for accessing all function within program.

The general form of function declaration is

<return_type> <function_name> ([<argument_list>]);

Function prototypes are desirable because they facilitate error checking between calls
to a function and corresponding function definition. They also help the compiler to perform
automatic type conversions on function parameters.
When a function is called, actual arguments are automatically converted to the types in function
definition using normal rules of assignment.

Function Definition

 The function Definition is, the task assigned to the function, that user declare.

The general form of a function definition is:

return_type function_name (declarations of formal argument list)

 {

local variable declarations;

executable statement 1;

executable statement 2;

executable statement n;

return (expression);

 }

Where return_type represents the data type of the value which is returned. The type

specification can be omitted if the function returns an integer or a character.

The formal argument list is a list of variables separated by commas that receive the values from

main program when function is called.

The last statement in the body of function is return (expression). It is used to return

the computed result, if any, to the calling program.

Calling a Function

 A function can be called by specifying its name followed by a list of arguments enclosed in
parentheses and separated by commas. If a function call does not require any arguments,
an empty pair of parenthesis must follow the function name.

Example :

#include <stdio.h>

#include <conio.h>

void add()

{

 int a, b, c;

 clrscr();

 printf("\n Enter Any 2 Numbers : ");

 scanf("%d %d",&a,&b);

 c = a + b;

 printf("\n Addition is : %d",c);

}

void main()

{

 Clrscr()

 void add(); // calling add() function

 add();

 getch();

}

Output :

 Enter Any 2 Numbers : 23 6

 Addition is : 29

The Return Statement:

information is returned from the function to the calling portion of the program via return

statement. Its uses control to be returned to the point from where the function was

accessed. The return statement can take one of the following forms:

return;

or

return (expression);

In the return (expression); statement, the value of the expression is returned to the

calling of the program.

A function can have multiple return statements, each containing different expression.

Example:

/* Program to convert lowercase character to uppercase */

include <stdio.h>

main()

{

char lower, upper;

char Lower_to_upper (char Lower);

printf (''\n Enter the lowercase character:");

scanf ("%c", & Lower):

upper = Lower_to_upper (lower);

printf ("\n The upper case Equivalent is % c", upper);

}

char lower_to_upper (char ch)

{

char c2;

. c2= (c1 > = 'a' && c1 < = 'z') ? (ch-32) : c1;

return (c2);

}

Passing Parameters to Functions

Call by value

Call by value means sending the values of the arguments to functions. When a Single value is

passed to a function via-an actual argument, the value of the actual argument is copied into the

function in formal argument, and no matter what the function does with that value, the value

stored in actual argument remains unchanged.

This procedure to pass the value of an argument to a function is known as passing by value or

call by value.

 Example:

/* A simple C program containing a function that alters the value of its argument */
#include <stdio.h>

void modify (int) ;

main()

 {

int N = 2;

 printf(''\nN = %d (from main, before calling the function)",N);

 modify(N); // sending actual value of N (Call by value)

printf(''\nN = %d (from main, after calling the function)",N);

 }

void modify (int N)

{

N * = 3;

printf("\nN = %d (from the function, after being modified)",N);
 }

Output: N= 2 (from main, before calling the function)

 N = 6 (from the function, after being modified)

 N = 2 (from main, after calling the function)

The original value of N (that is, =2) is displayed when main is executed. This value is

then passed to the function modify, where it is multiplied by three and the new value of

the formal argument that is displayed within the function. Finally, the value of N within

main () (the actual argument) is again displayed, after control is transferred back to function

main from function modify.

These results show that N is not altered within main; even though the corresponding

value of a is changed within modify.

Call by Reference:

Call by reference means sending the addresses of the arguments to called function. In this
method the addresses of actual arguments in the calling function are copied into formal
arguments of the called functions. Thus using these addresses we would have an access to
the actual arguments and hence we would be able to manipulate them. Using a call by
reference it is possible to make a function return more than one value at a time.

Example:

 /* A simple C program containing a function that alters the value of actual argument */

#include <stdio.h>

void modify (int *) ;

void main()

 {

int N = 2;

 printf(''\nN = %d (from main, before calling the function)",N);

 modify(&N); // sending address of N (Call by Reference)

printf(''\nN = %d (from main, after calling the function)",N);

 }

void modify (int *N) // pointer variable to receive address of N

{

*N= *N + 10;

printf("\nN = %d (from the function, after being modified)",*N);
 }

Output: N= 2 (from main, before calling the function)

 N = 12 (from the function, after being modified)

 N = 12 (from main, after calling the function)

Passing Array to a function :

Array elements can be passed to a function by calling the function by value, or by reference.
In call by value, we pass values of array elements to the function while in call by reference
we pass the name of array, without any subscript, and the size of array elements to the
function. Because array name is constant pointer that hold base address of first element
(array[0]).

Example :

/* passing Array by value * /

#include<stdio.h>
#include<conio.h>

void display(int); // function prototype

void main()
{
 int array[5]={2,4,6,8,9};
 int i;
 clrscr();
 for(i=0;i<5;i++)
 {
 display(array[i]); // passing each array’s element one by one
 }
 getch();
}

void display(int n) //receive element in n
{
 printf(“%d\t”,n);
}

Example :

/* passing Array by Reference * /

#include<stdio.h>
#include<conio.h>

void display(int[]); // function prototype

void main()

{

 int array[5]={2,4,6,8,9};

 int i;

 clrscr();

 display(array); // passing base address of array

 getch();

}

void display(int n[]) //receive element in array n

{

 int i;

 for(i=0;i<5;i++)

{

 printf(“%d\t”,n);

}

}

Functions Returning values

The result of the function can be returned to the calling program. This defines the type-

specifier in the function header. By default in C each function has a return type of "int". A

function can return only one value. Arguments- are passed by reference to overcome this

limitation.

If you want the function to return a value of any other data type than the default, you need to

mention it explicitly in the function header (prototype).

The following example illustrates this

Example :

/* finding largest value in an array * /

#include<stdio.h>
#include<conio.h>

int large(int[]); // function prototype

void main()

{

 int array[5]={2,4,6,8,9};

 int i,max;

 clrscr();

 max=large(array); //receive largest value in max returned by large() function

 printf(“Largest value =%d”, max);

 getch();

}

int large(int n[]) //receive element in array n

{

 int i,m=n[0];

 for(i=1;i<5;i++)

{

 If(m <n[i])

 m=n[i];

}

return m; //return value of m

}

Command-line Arguments

Every program must have a function main(). Till now, we know that main() function takes

no arguments. But the empty parenthesis in the main() may contain special arguments

that allow parameters to be passed to the main() from operating system.

Two arguments are passed to main() function

 argc : It is a integer type arguments that indicates the number of parameters passed to

 main() function. It automatically count the total number of arguments passed to

 function main().

 argv : It is a String (char * []) type arguments. Each String in this array will represent a

 parameter passed to function main().

Example :

void main(int argc , char *argv[])
{
 int i;
 clrscr();
 printf(“Your Total argument Received in function main(): %d\n”, argc);
 printf(“\nYour Given Arguments are :\n”);
 for(i=1 ; i < argc ; i++)
 {
 printf(“%s\n”,argv[i]);
 }

getch();
}

Where argv and argc may have different name also. In the for loop we have print elements of String type

array, named argv from index 1 to argc -1 because at index 0 array store executable file name

<filename.exe> as argument.

How to execute :

 Step 1: Create source file (filnname.c)

 Step 2: Press function key F9 to make executable file

 OR

 Go to Compile menu and select Make option

 Step 3: Go to File Menu and Select Dos shell option

 Step 4: Type filename and specify arguments i.e. filename arg1 arg2 arg3 arg4……………argN

and press Enter Key.

 Step 5: See Output and type exit command to return in program.

Arguments can be given as:

Output:

Recursion in Function
Recursion is a process by which function calls itself repeatedly, until some specified condition

has been satisfied. The process is used for repetitive computation in which each action is stated

in terms of previous result.

In order to solve a problem recursively, two conditions must be satisfied:

 Problem must be written in recursive form.

 Problem statement must include a stopping condition.

Recursive Function Definition

Recursive function is a function that contains a call to itself. C supports creating recursive function

with ease and efficient.

Recursive function must have at least one exit condition that can be satisfied. Otherwise, the

recursive function will call itself repeatedly until the runtime stack overflows.

Recursive function allows you to divide your complex problem into identical single simple cases

which can handle easily. This is also a well-known computer programming technique.

Example 1:

include<stdio.h>
long unsigned int factorial(long unsigned int number)
{

 if(number <= 1)
return 1;

 else
 return number * factorial(number - 1);

}

void main()
{

 long unsigned int N,F;
clrscr();
printf(“Enter any Number for Calculate Factorial : ”);
scanf(“%lu”,&N);
F=factorial(N);
printf(“\nFactorial of %lu is : %lu”,N,F);
getch();

}

Output:

Enter any Number for Calculate Factorial : 5

Factorial of 5 is : 120

Process diagram of program :

 main()

3 (call)

 factorial()

 2 (call) factorial()

 6

 (return) factorial()

 1

 2 (call)

 (return) 1

 (return)

Example 2: /* display numbers from 1 to 10 using recursive function */

include<stdio.h>
void display(int n)
{

 if(number > 10)
return ;

 else
 printf(“%d\n”,n);
 display(n+1);

}

void main()
{

 clrscr();
printf(“Numbers from 1 to 10 \n”);
display(1); //1 is a starting number
getch();

}

N

F = factorial(3)

number

if(number <=1)

return 1;

else

return 3*2
Number

if(number <=1)

return 1;

else

return 2*1

number

if(number <=1)
return 1;
else
return 3*---

3

6

3

1

2

Storage Classes

There are two different ways to characterize variables.

• by data types • by storage class

Data types refer to the type of information while storage class refers to the lifetime of

a variable and its scope within the program.

 A variable in C can have anyone of the four storage classes.

 Automatic storage class

 Extern storage class

 Static storage class

 Register storage class

A variable storage class tells us

1) Where the variable would be stored.

2) What will be the initial value of the variable, if the initial value is not specifically

 assigned (i.e. the default initial value).

3) What is the scope of the variable, i.e., in which functions the value of the variable

would be available.

4) What is the life of the variables; i.e., how long would the variable exist.

Automatic storage class
These variables comes into existence whenever and wherever the variable is declared. These variables

are also called as local variables, because these are available local to a function. The storage is in the

memory and it has a default value, which is a garbage value. It is local to the block in which it has been

declared and it life is till the control remains within the block in which the variable is defined. The key

word used is 'auto'.

By default..a variable declared inside a function with storage class specification is an automatic.

Declaration:

 int N;

 or

 auto int N;
Example :

main()

{

auto int i=10;

printf(“%d”,i);

}

Output: 10

Extern storage class
 The variable has a storage in the memory. Default initial value is zero. The scope of the variable is

global. It is present as long as the program execution comes to an end. The keyword used is 'extern'.

Default value of extern variable is zero.

Declaration: extern int N;

In the following example, Variable “ i ” is a global variable. If the global variable declared

outside (before function definition), there is no need to use extern declaration in function

that use global variable. Whereas, if global variable declared outside (after function

definition), it has to be extern declaration within function that use global variable.

 Static storage class

The storage is in the memory and default initial value is zero. It is local to the block in which

it has been defined. The value of the variable persists between different function calls. The

value will not disappear once the function in which it has been declared becomes inactive. It

is unavailable only when you come out the program. The key word used is 'static'.

Declaration : static int N;

Example :

void value()

{

 static int a=5;

 a=a+2;

 printf("\t%d",a);

}

int i=10; // global variable
main()
{
 int i=2;
 printf(“%d”,i);
 display();
}
display()
{
 printf(“\n%d”,i);
}

Output:
2

 10

main()
{
 int i=2;
 printf(“%d”,i);
 display();
}
display()
{
 extern int i;
 printf(“\n%d”,i);
}
int i=10; //global variable

Output:
2

 10

void main(){

 value();

 value ();

 value();

 getch();

}

The output of the program is not 7 7 7

but it is 7 9 11

Register storage class

 The storage of this type of variables is in the CPU registers. It has a garbage value initially. The
scope of the variable is it is local to the block in which the variable is defined. Its life is till the
control remains in the block in which it is defined. A value stored in a CPU register cal always be
accessed faster than the one which is stored in memory. Therefore, if a variable is used at many
places in a program it is better to declare its storage class as register. A good example of
frequently used variables is loop counters. The key word used is 'register'.

Declaration :

 register int N;
Example :

main()

{

register int i=10;

printf(“%d”,i);

}

Output: 10

Scope and Lifetime of Declaration

Storage Class Where Declared Visibility (Active) Lifetime (Alive)

None Before all functions in a file Entire file plus other files Entire Program

 (may be initialized) where variable is declared (Global)

 with extern

extern Before all functions in a file Entire file plus other files Global

 (cannot be initialized) where variable is. declared

 with extern and the files

 where variables originally .

. declared as global

static Before all functions in a file Only in that file Global

auto Inside a function or a block Only in that function or Unit end of function

 block or block

register Inside a function or block Only in that function or Unit end of function

 block or block

static Inside a function Only in that function Global

