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DETERMINANTS

Def. Let A= [aij] be a square matrix of order n. The determinant of A, detA or |A| is defined as

follows:
(a) If n=2, det A= le 212 ST a-llazz XK alzaZl
21 22
all a12 a13
(b) If n:3, det A = a21 a22 a23
a a a

31

or det A= a,8,a; +a,a,a; +a,a,d,
—a,a,a,; —a;,3,3,, —a;,3,a,

33

1 1 2 3
e.g. Evaluate () ‘ 4 j (b) detf2 -1 0
1 -2 -1
3 2 X
eg. If|8 x 1]=0, find the value(s) of x.
3 -2 0
all alz alS a a a a a a
N.B. detA= a, Qa, ay =, # 2 — a, “ 2+ a, “ ?
a32 a33 a3l a33 a3l a32
a31 a‘32 a33
a, a a a a, &
or - 21 3|4 g 1 3| 1 3
alz a31 a33 z a31 a33 32 a'21 a23

or .........




By using

(@)

Evaluate

e.g.

PROPERTIES OF DETERMINANTS

det(A") =det A.

i.e.
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pa, pb, pc, a, b ¢
N.B. (1) Pa, pbz PC, | =Pl A, bz C,
pa, pb, pc, a, b, c

3 3

(2)  Ifthe order of A is n, then det(AA) = A" det(A)

a’l bl Cl al + ﬂ’bl bl Cl
® |a, b, c|=la,+4b, b, ¢,
a, b, c| |a,+4b, b, ¢,
Xl yl Zl aC + m + C Xl + ayl + IBZl yl Zl
NB Xz yz Zz 2 ° ' X2+6¥y2+ﬂ12 yz Zz
XS y3 ZS XS + ay3 + ﬂzs y3 Z3
1 2 0 5 3 7
e.g. Evaluate (a) 0 45 (b) 3 7 5
6 7 8 7 2 6
1 a b+c
eg. Evaluatel b c+a
1 ¢ a+b
e.g.  Factorize the determinant
X y X+Y
y X+Yy X
X+Yy X y
e.g.  Factorize each of the following :
a® b* ¢t
(a) a b c
1 1 1
2a’ 2b° 2c®
(b) a’ b? c’
1-a®> 1-b® 1-¢°
Multiplication of Determinants.
a. a b. b
Let A — 11 12 , B — 11 12
| | a21 a22 | | b21 b22
a. a,lb, b
Then |AIBl= "1 12|11 12
| || | a2l a22 bZl b22

a'21bll + a'22 b21 aZlb12 + a22 b22

a1lbll + a12 b21 allblZ + a12 b22 ‘

Properties :




(1)  det(AB)=(detA)(detB)
(2 |Al(BIIC)=(IAIBDIC]
(3 |AIBI=BIIA]
4 |AI(BI+C)=|AIB+AIC]
1 1
e.g. Provethat|a b
a® b® c

Minors and Cofactors

ie. |AB|=|A|B|
N.B. A(BC)=(AB)C

N.B. AB=BA in general
N.B. A(B+C)=AB+AC

1
cl=(@a-b)(b-c)(c-a)

a‘ll a‘lZ a'13 B B
Def. Let A=|a, a, a,l| then A, thecofactorof a, ,isdefined by
a‘31 a'32 a33
Al — a'22 a23 , Al a'21 a23 O 'A3 — all a12 .
. a32 a33 ? a31 a33 ? a'21 a'22
Since |Al= N a; 13 ay 12 ¥
‘ ‘ =-a, a,, a —a,, a =48, Ay — 8y Ay, + 8y A,
32 33 31 33 31 32
detA if i=]
Theorem. @ a A, +a,A,+a A, = {0 il - i
detA if i=]j
( ) ailAlj 2|A21 a3|A3] {O if |¢_]
€.g. a, A, +a,A, +a A, =detA,  a,A +a,A, +a,A, =0, et
all alZ a13 L.
eg.23 Let A=|a, a, a, | andc; bethecofactorof a, ,where 1<i,j<3.
a31 a‘32 a33
Cll CZl CSl
(@ Provethat Alc, c, c,|=/(detA)l
C13 C23 C33
C C

(b)

Hence, deduce that [C, C

11 21

O O

a1
5| = (det A)2

33

22

C C

(e

13 23

INTRODUCTION : MATRIX/ MATRICES

1. A rectangular array of mxn numbers arranged in the form




a, 4, - q,
a.Zl Ay v agn
a'ml amZ T a'mn
is called an mxn matrix.
e 2 3 4 IS a 2x3 matrix
0. X .
% |1 8 5
[ 2
e.g. 7 | is a 3x1 matrix.
=3
2. If a matrix has m rows and n columns, it is said to be order mxn.
(2 0 3 6
e.g. 3 4 7 0} isamatrix of order 3x4.
1 9 2 5
1 0 -2
e.g. 2 1 5 |isamatrix of order 3.
13 0
3. [al a, - an] is called a row matrix or row vector.
b,
b2 - -
4, | is called a column matrix or column vector.
_bn
[ 2
e.g. 7 | is a column vector of order 3x1.
=3
e.g. [—2 -3 —4] is a row vector of order 1x3.
5. If all elements are real, the matrix is called a real matrix.
a, a, - a4,
Ay Ay By, . ;
6. . . =" | is called a square matrix of ordern. ~ And a,,, a,,, ...
a'nl anZ T ann

called the principal diagonal.

e.g. B _92} is a square matrix of order 2.




7. Notation : [aii]mxn . (aii)mxn . AL

SOME SPECIAL MATRIX.

Def .1  If all the elements are zero, the matrix is called a zero matrix or null matrix, denoted by
O

mxn *

e.g. [8 8} is a 2x2 zero matrix, and denoted by O, .

Def.2 Let A= [aij] be a square matrix.
Q) If a;, = O for all i, j, then A is called a zero matrix.
(i) If a; = 0 for all i<j, then A is called a lower triangular matrix.

(i) Ifa; = O for all i>j, then A is called a upper triangular matrix.

a, 0 o --- 0 a(l)l a, a:1n
a a O " a22 .
‘21 22 ¥ 0 0
. 0 :
anl anz ann _(‘) 0 a'nn_
i.e. Lower triangular matrix Upper triangular matrix
1 0 0
e.g. 2 1 0] isalower triangular matrix.
-1 0 4
e.g. 0 _5}isanuppertriangularmatrix.

Def.3 Let A= [aii]n _be asquare matrix. If a; = O forall i # j , then Ais called a diagonal

matrix.
1 0 O
e.g. 0 -3 0] isadiagonal matrix.
0 0 4
Def.4  If Aisadiagonal matrixand a,, = a,, =--=a,, =1, then A is called an identity matrix

or a unit matrix, denoted by | .




o

1 0
S

ARITHMETRICS OF MATRICES.

e.g.

o o
o - O
= O

Def.5 Two matrices A and B are equal iff they are of the same order and their corresponding
elements are equal.
. a,] =[b] <= a=b forali,j.
fa 2] [-1 ¢
e.g. 4 b:‘__d J & a=-1b=1c=2,d=4.
s - 2 1
2 3 2 4 2 3 -1
N.B. [4 07{3 0 and | 3 O 7{1 0 4}
- - -1 4
Def.6 Let A= [aij]m ~and B = [bij]m . Define A+ B as the matrix C = [Cii]m _ of the same

order such that
¢, =@, +b; foralli=12,...mandj=1,2,..,n.

3 [2 3 -1 N 2 SN
9 10 4]72 -1 5|7

2 1
N.B. 1. 3 0|+ 2 3N is not defined.

1 0 4
-1 4
2 3 ) )
2. [4 O}+5 is not defined.

Def7 Let A=[a,| .Then—A=[-a,] and A-B=A+(B)

m

1 2 3 2 4 0] _.
e.g.l IfA:[_l 0 2} and B:[3 1 1}.F|nd-AandA-B.

Properties of Matrix Addition.

Let A, B, C be matrices of the same order and O be the zero matrix of the same order. Then

€)) A+B=B+A
(b) (A+B)+C=A+(B+C)
() A+(-A)=(-A)+A=0

(d)

A+O=0+A




Scalar Multiplication.

Let A= [aij ]mxn , k is scalar. Then KA is the matrix C = [Cij]
ie.  KkA=[ka]
3 2 _
e.g. If A= {_5 6} : then -2A=
N.B. 1)  -A=(-DA

(2) A-B=A+(-1)B

Properties of Scalar Multiplication.
Let A, B be matrices of the same order and h, k be two scalars.
Then @ k(A+B)=kA+kB

(b) (k+h)A=kA+hA

(© (hk)A=h(kA)=k(hA)

defined by ¢, = ka, ,

Let A= [aij ]m g The transpose of A, denoted by A", or A’ ,is defined by

a, a, - ay
AT = a}z &y ot arpz
a'1n aZn a'nm nxm
e.g. A= {_35 _62} , then AT =
e.g A:[j —06 _12} then AT =
e.g A:[S],then AT =
N.B. (1) |7 =

@ A=[a] . then A=

mxn

Properties of Transpose.
Let A, B be two mxn matrices and k be a scalar, then

@ (A")' =
®) (A+B)' =
© (kKA)' =
A square matrix A is called a symmetric matrix iff A" = A.
i.e. A is symmetric matrix < A’ = A & a;, =4,

Vi, j

Vi, j.




1 3 -1
e.g. 3 -3 0 | isasymmetric matrix.
-1 0 6]
1 3 1]
e.g. 0 -3 0 [ isnotasymmetric matrix.
-1 3 6]
A square matrix A is called a skew-symmetric matrix iff A" = —A.
ie.  Aisskew-symmetric matrix < A" =—-A < a, =-a, Vi,j
0 3 -1
Provethat A=|-3 0 5 |[isaskew-symmetric matrix.
1 5 0

Is &, =0 forall i=1,2,...,n for a skew-symmetric matrix?

Matrix Multiplication.
Let A=[a,]| andB= [bkj] - Then the product AB is defined as the mxp matrix C = [Cij]

nx mx p
where
C; = ailblj +ai2b2j+"'+ainbnj = Zaikbkj .
k=1
i.e. AB = [Z aikbkj:|
k=1 =
(2 1] 2 3 -1
egd Let A= 3 O and B:[ } . Find AB and BA.
1 4 1 0 4 2s

L 13x2

10

2 1
egb Let A={ 3 O and B:|:2 1
4

} . Find AB. Is BA well defined?
2%x2

N.B. Ingeneral, AB=BA.
i.e.  matrix multiplication is not commutative.

Properties of Matrix Multiplication.
(a)  (AB)C = A(BC)
(b) A(B+C) = AB+AC
(© (A+B)C = AC+BC




d AO=O0A=O
€ IA=AI=A

()  K(AB) = (KA)B = AkB)
@ (AB)' =B'A".

N.B. 1) Since AB #BA ;
Hence, A(B+C) # (B+C)A and A(kB) # (kB)A.

) A*+kA=A(A+kl)=(A+kIA.

(3) AB-AC=0 = AB-C)=0
% A=0 or B-C=0

e.g. LetA:(é 8), B:(g (D, C:((])_ 8)
men se-ac=(g ollg o ol o
:(0 0)_(0 oj:(o 0)
0 0 0 O 00
But A0 and B=C,
so AB-AC=0 =% A=0 or B=C.

Powers of matrices

For any square matrix A and any positive integer n, the symbol A" denotes A- A-A---A..
%/—/
n factors

N.B. 1 (A+B)>’=(A+B)(A+B)
= AA+ AB+ BA+ BB

= A’ + AB + BA+ B?
2 If AB=BA,then (A+B)2 = A? + 2AB + B?

2 1 1
e.g. LetA:(l 2 _3)8:(2 4 OJ,C: 1 0 and D=| 2
-1 0 2 3 -1 1 11 0

Evaluate the following :
(@) (A+2B)C (b) (AC)?
(© (B"-3C)'D (d) (-2A)'B- DD’

eg. (@ Find a 2x2 matrix A such that

ord 9-3as(4 9]




2
p

. 21)_
A —Aand(3 0A—

K

j such that
5 o
3 0

3 -1\(1 A 01\ .
(c) If(l 1)()():(0 /J(Xj,fmdthevaluesofx and 1.

(b) Find a 2x2 matrix A = (

> R

cos@é —sind - :
. ) . Prove by mathematical induction that
sind cosé

) (cpsne —smn&j for n=12.....
sinn@ cosné@

e.g. Let Az(

e.g. (@) Let A= (g é) where a,b eR and a = Db.
, a"=b"
Prove that A" = . a_ for all positive integers n.
0 b"

1 2 95
(b) Hence, or otherwise, evaluate (O 3) .

010
e.g. (@ Let A= [0 0 1} and B be a square matrix of order 3. Show that if A
0 00

and B are commutative, then B is a triangular matrix.

(b) Let A be a square matrix of order 3. If for any Xx,y,z € R, there exists 4 € R such that

X X
A(y} = g[y} , show that A is a diagonal matrix.
Z Z

(c) If Ais a symmetric matrix of order 3 and A is nilpotent of order 2 (i.e. A>=0), then A=0,
where O is the zero matrix of order 3.

Properties of power of matrices :

(1)  Let A be asquare matrix, then (A")" = (A")".

(2) If AB=BA, then
@ (A+B)"=A"+C'A"'B+C;A"*B*+C]A"°B*+-+C" , AB"" +B"
(b) (AB)"=A"B".




B (A+D)"=A"+CA""+C]A"?+C]A"°+-+C" A+C'l

e.g @ Let X and Y be two square matrices such that XY = YX.
Provethat (i) (X+Y)? = X?+2XY +Y?

i) (X+Y) =3 C'X™Y" for n=34,5, ..
r=0

(Note: For any square matrix A , define A° = 1))

1 2 4
(b) By using (a)(ii) and considering [0 1 3} , or otherwise, find

00 1
1 2 4H°
0 1 3| .
00 1

(© If X and Y are square matrices,
(i)  provethat (X +Y)* = X?+2XY +Y? implies XY =YX ;
(i)  provethat (X +Y)® = X°+3X?Y +3XY? +Y? does NOT
implies XY = YX..

. : . Al (b O
(Hlnt.ConS|derapart|cuIarXandY,e.g.x_(1 OJ’Y_(O O) )

INVERSE OF A SQUARE MATRIX

N.B. 1) If a, b, ¢ are real numbers such that ab=c and b is non-zero, then

C :
a= b =cb™ and b™ is usually called the multiplicative inverse of b.

(2 If B, C are matrices, then % is undefined.

Def. A square matrix A of order n is said to be non-singular or invertible if and only if there exists
a square matrix B such that AB = BA = |.The matrix B is called the multiplicative inverse of
A, denoted by A™

e AAT=ATA=1.
e.g. Let A= G gj , show that the inverse of A is (_21 _35)

. (9-GY
w  s(5 967




Non-singular or Invertible

Def. If a square matrix A has an inverse, A is said to be non-singular or invertible. Otherwise, it is
called singular or non-invertible.
3 5 2 -5 .
e.g. and are both non-singular.
g (1 2) (—1 3) |
le. A is non-singular iff A™ exists.

Thm. The inverse of a non-singular matrix is unique.

N.B. 1) 1+ =1, so | is always non-singular.
2 OA=0=#1,s00 is always singular.
3) Since AB = I implies BA = 1.
Hence proof of either AB = | or BA =1 is enough to assert that B is the inverse of
A

2 1
.g. Let A= .
e.g et A (7 4)
(@ Showthat | —-6A+ A’ =0.
(b) Show that A is non-singular and find the inverse of A.

(© Find a matrix X such that AX = (_11 é) ;

Properties of Inverses

Thm. Let A, B be two non-singular matrices of the same order and A be a scalar.
@ (A=A
(b) AT isanon-singularand (A")" = (A™?)".
(c)  A"isanon-singularand (A")™" = (A™)".

(d)  AAisanon-singularand (1A)™" = % Al

(e)  ABisanon-singularand (AB)™" =B*A™.

INVERSE OF SQUARE MATRIX BY DETERMINANTS




S A, A, A,
Def. The cofactor matrix of A is defined as cofA = A, A, Al
A, A, A

Def. The adjoint matrix of A is defined as

| (A A A,
adjA=(cofA) = A, A, A,
Ay Ay Ay
e.g. |If A:(i g),find adjA.
11 3
e.g. @) Let A={1 2 0 [, findadjA.
11
3 2
(b) LetB=|1 1 -1],findadjB.
5 1 -V
Theorem. For any square matrix A of order n A(adjA) = (adjA)A = (detA)l

a, a, - a, A11 A21 Anl
A(adJA): a:21 a:22 a?n A:‘iz A;zz A:w

nl a‘nZ = a'nn Aln AZn i Ann

a

Theorem. Let A be a square matrix. If detA =0, then A is non-singular
1 :
and  A'=———(adjA).
det A

Proof Let the order of A be n, from the above theorem , di(Aade) =1

etA
32 1
e.g. Giventhat A={1 1 -1/|,find A™.

5 1 -

bj is non-singular , find A™.

e.g.  Suppose that the matrix A:(‘z q

3 5), find A™.

e.g. GiventhatA:(l )

Theorem. A square matrix A is non-singular iff detA =0 .




e.g.  Show that A:G g) is non-singular.

X+1 2 x-1
eg. Let A=|x-1 2 -1 |,where xeR.
S 7 =X

@ Find the value(s) of x such that A is non-singular.

()  Ifx=3,find A

N.B. Aissingular (non-invertible) iff A~ does not exist.
Theorem. A square matrix A is singular iff detA = 0.

Properties of Inverse matrix.

Let A, B be two non-singular matrices of the same order and A be a scalar.

-1 _ i -1
@ (AT=-A
@ (A=A
@ (A)'=(AY)

T

4  (A")"=(A")" forany positive integer n.
5) (AB)'=B’A"

(6) The inverse of a matrix is unique.

1
7 B
D A= Gera

NB. XY=0%X=0o0r Y=0
(8)  If Aisnon-singular,then AX =0= A"AX =A0=0
=X=0
NB. XY=XZxX=00rY=Z
(9)  If Aisnon-singular, then AX = AY = A"AX = A"AY
= X=Y
(10)  (A'MA)" = (A*MA)(A'MA)---(A"MA) =A'M"A

a 0o a* 0 o
(11) ¥ M=|0 b O|l,then M*=| 0 b* 0].

0 0 ¢ 0 0 c*




a
(12) 1t M=|0
0

4
Let A=|1

0

e.g.

(@)
(b)
(©)

3

Let A=
eA(1

e.g.

(a)
(b)
(a)

(b)

e.g.

e.g. @

a” 0 o0
,then M"=| 0 b" 0| wheren=0.
0 0 c

1 3 -1 1 00
,B={0 13 4 |and M=|0 1 0.
0 -33 -10 0 0 2

Find A" and M°.
Show that ABA™ = M.

WweEk OT O

PR, O O OO

Hence, evaluate B°.

8 2 4
5) and P_(l 1).
Find P*AP.
Find A", where n is a positive integer.
Show that if A is a 3x3 matrix such that A' = — A, then detA=0.
1 -2 74
Giventhat B=| 2 1 -67],
74 67 1

use (a) , or otherwise , to show det(l —B) = 0.
Hence deduce that det(l —B*) =0.

If o, B and y are the roots of x° + px+ = 0, find a cubic equation whose roots

are ¢’ , B° and y°.

(b)

e.g.

Let M be the set of all 2x2 matrices. For any A = (an

X 2.
Solve theequation 2 x 3 =0.
28X

Hence, or otherwise, solve the equation

x° —38x* +361x —900= 0.
) e
aZZ

21

define tr(A)=a, +a,,.

(@)

(b)

Show that forany A, B,C e M and o, B € R,
(i) tr(cA+ B) = atr (A) + Ar(B),

(i)  tr(AB) =tr(BA),
(iii)  the equality “tr(ABC) = tr (BAC)” is not necessary true.
Let A e M.

(i)  Showthat A’ —tr(A)A=—(det A)I,
where | is the 2x2 identity matrix.




(i) Iftr(A*)=0 and tr(A) =0, use (a) and (b)(i) to show that

A is singular and A’ =0.
(c) LetS, T € M such that (ST —TS)S = S(ST —TS).Using (a) and (b) or

otherwise, show that

(ST-TS)? =0

Eigenvalue and Eigenvector

Let A= [3 _1j and let x denote a 2x1 matrix.

2 0

(@  Find the two real values A, and A4, of 4 with 4,>4,

such that the matrix equation
*) AX = AX
has non-zero solutions.

(b) Let x, and X, be non-zero solutions of (*) corresponding to
A, and A, respectively. Show that if

= Xllj and :(Xlzj
% (xz %= \x,

then the matrix X = (Xﬂ Xl?) is non-singular.

1 2

(©) Using (a) and (b), show that AX = X(% ﬂ? )
2

and hence A" = x(ﬁl ﬂonj X where n is a positive integer.
2

0
3 %1)"
Eval X
valuate (2 O)

Cramer’s rule

The Cramer’s rule can be used to solve system of algebraic equations.To solve the system, X1 and x; are
written under the form:

And the same thing for xs
When the number of equations exceeds 3, the Cramer’s rule becomes impractical because the
computation of the determinants is very time consuming.




Example

Solve using the Cramer’s rule the following system
X, —2X, =—3

The elimination of unknowns

To illustrate this well known procedure, let us take a simple system of equations with two equations:

)

{allxl +a,X, = bl
(2

Ay X T a8yX, = bz

Step 1. We multiply (1) by a21 and (2) by ais, thus

{alla?lxl +8,,8, X, = bla21
Ay, 8y, X +31,8,)X, = bzan

By subtracting
Ay,8, X, — 8,85 X, = bzall - b1":121

Therefore;

allbz — aZlbl

X, =
a;,8,, —a;ay

Step 1. And by replacing in the above equations:

_ a22b1 — a12b2
, =—=—t =
a;,8,, — 8,3,

Note vv Compare the to the Cramer’s law... it is exactly the same.

The problem with this method is that it is very time consuming for a large number of equations.

Rank of a Matrix:
Recall:
Let




a,, a,, U a,
a a oo e a
A — .21 .22 . .2n
_aml am2 amn ]

The i’th row of A is
row(A)=[a, a, - a} i=12...m,

and the j'th column of A is

col;(A) = : , 1=12,...,n.

Definition of row space and column space:
span{row, (A),row, (A),...,row, (A)},

which is a vector space under standard matrix addition and scalar multiplication, is referred to
as the row space. Similarly,

span{col, (A),col, (A),...,col_(A)}

which is also a vector space under standard matrix addition and scalar multiplication, is referred
to as the column space.

Definition of row equivalence:
A matrix B is row equivalent to a matrix A if B result from A via elementary row operations.

Let
123 45 6 2 4 6 123
A=|4 5 6|B,={1 2 3|B,=|4 5 6,B,=(3 3 3
7809 7809 7809 7809
Since
M1 2 3 4 5 6
A=(2)4 5 6|—22@ 5B =|1 2 3
3)|7 8 9 7809
M1 2 3 2 4 6
A=(2)[4 5 6|—2F0 5B =|4 5 6
3)[7 8 9 789




M1 2 3 123
A=(2)[4 5 6|—220 . -3 3 3
3|7 8 9 789

Bl, 821 Bg are all row equivalent to A

Important Result:
If Aand B aretwo M X N row equivalent matrices, then the row spaces of A and B are equal.

How to find the bases of the row and column spaces:
Suppose A isa M X N matrix. Then, the bases of the row and column spaces can be found via the

following steps.

Step 1:
Transform the matrix A to the matrix in reduced row echelon form.

Step 2:
® The nonzero rows of the matrix in reduced row echelon form form a basis of the row space of A.
® The columns corresponding to the ones containing the leading 1’s form a basis. For example, if

N =6 and the reduced row echelon matrix is
I e e

¢« O X X =X
RIS R

O P X X

O 0 1
O 0 O
O O O

O 0 0 0 0 O

then the 1°st, the 3°’rd, and the 4°th columns contain a leading 1 and
thus CO|1(A), col, (A), col, (A) form a basis of the column

space of A.

Note:
To find the basis of the column space is to find to basis for the vector space

Span{C0|1 (A),col, (A),...,col, (A)} Two methods introduced in the previous section

can also be used. The method used in this section is equivalent to the second method in the previous
section.

Let




(1 -2 0 3 -4]
3 2 81
12 3 7 2 3
-1 2 0 4 -3
Find the bases of the row and column spaces of A.
[solution:]
Step 1:
Transform the matrix A to the matrix in reduced row echelon form,
(1 -2 0 3 —4] (1 0 2 0 1]
A_ 3 2 8 1 4 in reduced row echelon form 0 1 1 0 1
12 3 7 2 3 00 01 -1
_—1204—3_ _00000_
Step 2:

® The basis for the row space is

fto2o01fo1101oo1 -1

® The columns corresponding to the ones containing the leading 1’s are the 1’st, the 2°nd, and the
4°th columns. Thus,

form a basis of the column space.

Definition of row rank and column rank:

The dimension of the row space of A is called the row rank of A and the dimension of the column

space of A is called the column rank of A.

Example

Since the basis of the row space of A is
fto2o01o11041ooo1 -1

the dimension of the row space is 3 and the row rank of A is 3. Similarly,

iU 2 S
3 2 1]
P B 2

=1k 24 4]

T177[—27[3
3 2 1]
2 'l 3 |'|2

L—1]L 2 JL4])

~

is the basis of the column space of A. Thus, the dimension of the column space is 3 and the column
rank of A'is 3.

Important Result:
The row rank and column rank of the M X N matrix A are equal.




Definition of the rank of a matrix:
Since the row rank and the column rank of a m > N matrix A are equal, we only refer to the rank

of A and write Fan k(A).

Important Result:
If Aisa M X N matrix, then
rank(A) + nullity(A)

= the dimensionof the columnspace + the dimensionof the null space

=N
(1 0 0 0 O]
O 1 0 0 O
Example A=10 0 1 0 0| adn=5.
O 0O 0 0 O
0 0 0 0 O]
Since
(1] [O] [O]
O 1 O
S OL1O |, ]|r
O O O
s iR SO )

is a basis of column space and thus I'an k(A) = 3. The solutions of Ax=0 are
X =0,%=0X=0X,=5,%=S,,5,5 €R.

Thus, the solution space (the null space) is

0 0] o] [o]
0 0 0[]0
S;{0|+5s,]0| < spamk{0},|0|;
1 0 1110
0 1 0|1
0] [0] o o S
0 0
Then, | 0| and | 0 | are the basis of the null space. and nU”it&(A)=2.
) L
Theref(_)r(;, .

rank(A) + nullityf(A) =3+2=5=n

Important Result:
Let Abean N XN matrix.

A is nonsingular if and only if Fan k(A) =n.




rank(A)=n < A is nonsingular < det(A)= 0
< Ax =Db has a unique solution.
rank(A)<n < Ax=0 has a nontrivial solution.

Important Result:
Let Abean M X N matrix. Then,

AX =D has a solution rank(A) = rank[Al b]

Eigenvectors and Eigenvalues of a matrix

The eigenvectors of a square matrix are the non-zero vectors which, after being multiplied by the
matrix, remain proportional to the original vector, i.e. any vector x that satisfies the equation:

AX = JX,
where A is the matrix in question, x is the eigenvector and A is the associated eigenvalue.

As will become clear later on, eigenvectors are not unigue in the sense that any eigenvector can be
multiplied by a constant to form another eigenvector. For each eigenvector there is only one associated
eigenvalue, however.

If you consider a 2 x 2 matrix as a stretching, shearing or reflection transformation of the plane, you
can see that the eigenvalues are the lines passing through the origin that are left unchanged by the
transformation®.

Note that square matrices of any size, not just 2 x 2 matrices, can have eigenvectors and eigenvalues.

In order to find the eigenvectors of a matrix we must start by finding the eigenvalues. To do this we
take everything over to the LHS of the equation:

Ax —Ax =0,
then we pull the vector x outside of a set of brackets:
(A—-Al)x=0.

The only way this can be solved is if A— Al does not have an inverse?, therefore we find values of 4
such that the determinant of A— Al is zero:

1 We leave out rotations for the moment as no vector other than the zero vector (the origin) is left unchanged. We will see
later there is a way of coping with rotation.

If A— Al does have an inverse we find X = (A - )710 =0, i.e. the only solution is the zero vector.




A 2l|=0.

Once we have a set of eigenvalues we can substitute them back into the original equation to find the
eigenvectors. As always, the procedure becomes clearer when we try some examples:

Example 1
Q) Find the eigenvalues and eigenvectors of the matrix:
2 1
A= :
i 3
A) First we start by finding the eigenvalues, using the equation derived above:
2 1 A 0\ R-4 1
A-A1|= - = :
1 2 0 4 1 2-2
If you like, just consider this step as, “subtract A from each diagonal element of the matrix in the
question”.

Next we derive a formula for the determinant, which must equal zero:

‘211 3 11‘:(2—/1)(2—/1)—1x1:ﬂ,2—2/1+3:O.

We now need to find the roots of this quadratic equation in A .
In this case the quadratic factorises straightforwardly to:
2 -24+3=(1-3)1-1)=0.
The solutions to this equation are 4, =1 and A, =3. These are the eigenvalues of the matrix A.

We will now solve for an eigenvector corresponding to each eigenvalue in turn. First we will solve for
A= =1:

Xy

To find the eigenvector we substitute a general vector X = {
X2

] into the defining equation:

AX = AX,

2l




By multiplying out both sides of this equation, we form a set of simultaneous equations:

2X+X, ) (%
X +2% ) (x,)

or

2%, + X, = Xy,
X, +2X, = X,.

X, +X, =0,
X, + X, =0,

where we have taken everything over to the LHS. It should be immediately clear that we have a
problem as it would appear that these equations are not solvable! However, as we have already

mentioned, the eigenvectors are not unique: we would not expect to be able to solve these equation for
one value of x, and one value of X, . In fact, all these equations let us do is specify a relationship

between x, and x,, in this case:

or,

S0 our eigenvector is produced by substituting this relationship into the general vector x:

X (_X;J.

This is a valid answer to the question, however it is common practice to put 1 in place of x, and give

()

We follow the same procedure again for the second eigenvalue, A= A4, =3. First we write out the

the answer:

defining equation:
AX = AX,
2 1Y\ x
1] -3« X ,
1 2)\x, X,
and multiply out to find a set of simultaneous equations:

2%, + X, = 3%y,
X, +2X, = 3X,.




Taking everything over to the LHS we find:

- X +X,=0,
X, — X, =0.

This time both equations can be made to be the same by multiplying one of them by minus one. This is
used as a check: one equation should always be a simple multiple of the other; if they are not and can
be solved uniquely then you have made a mistake!

Once again we can find a relationship between x, and Xx,, in this case X, = X,, and form our general

eigenvector:

As before, set x, =1 to give:

Therefore our full solution is:

Example 2

Q) You will often be asked to find normalised eigenvectors. A normalised eigenvector is an
eigenvector of length one. They are computed in the same way but at the end we divide by the length of

the vector found. To illustrate, let’s find the normalised eigenvectors and eigenvalues of the matrix:

5 -2
A= .
7 -4
A) First we start by finding the eigenvalues using the eigenvalues equation:
5-4 =2
7 —-4-1

A= 2l|= =0.

Computing the determinant, we find:




(5-A)-4—2)+2x7=0,
and multiplying out:
A —A-6=0.
This quadratic can be factorised into (1—-3)4+2)=0, giving roots 4, =-2 and 4, =3.

To find the eigenvector corresponding to A =4, =—2 we must solve:
AX = AX,

o)L

When we compute this matrix multiplication we obtain the two equations:

) A BT M
X, —4X, ==2X,.

Moving everything to the LHS we once again find that the two equations are identical:

7%, —2X, =0,
LX2X=0;

and we can form the relationship x, = % X, and the eigenvector in this case is thus:

Xl
X=|7 :
oM

In previous questions we have set X, =1, but we were free to choose any number. In this case things
are made simpler by electing to use x, =2 as this gets rid of the fraction, giving:

)

This is not the bottom line answer to this question as we were asked for normalized eigenvectors. The
easiest way to normalize the eigenvector is to divide by its length, the length of this vector is:

X =22 + 7% =53

Therefore the normalized eigenvector is:




The chevron above the vector’s name denotes it as normalised. It’s a good idea to confirm that this
vector does have length one:

A

We must now repeat the procedure for the eigenvalue 1 =4, =3. We find the simultaneous equations

are:

2%, — 2%, =0,
X, — 71X, =0,

and note that they differ by a constant ratio. We find the relation between the components, x, = X, , and

hence the general eigenvector:

and choose the simplest option x, =1 giving:

X

Il
G -
|_\- [N

Therefore the solution to the problem is:

Example 3

Q) Sometimes you will find complex values of A ; this will happen when dealing with a rotation
matrix such as:




which represents a rotation though 90°. In this example we will compute the eigenvalues and
eigenvectors of this matrix.

A) First start with the eigenvalue formula:

-1 -1
1 -2

=0.

Computing the determinant we find:

A +1=0,

which has complex roots A ==i. This will lead to complex-valued eigenvectors, although there is
otherwise no change to the normal procedure.

For A, =i we find the defining equation to be:
AX = X,
0 B Xl - X]_
= ¥ :
1 0 A\x, X,
Multiplying this out to give a set of simultaneous equations we find:

— X, =Xy,
X, = IX,.

We can apply our check by observing that these two equations can be made the same by multiplying
either one of them by i. This leads to the eigenvector:

Therefore our full solution is:
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LIMITS & CONTINUITY:
Limit at a Point, Properties of Limit, Computation of Limits of Various Types of Functions,
Continuity at a Point, Continuity Over an Interval, Intermediate Value Theorem, Type of
Discontinuities

Limit - used to describe the way a function varies.
a) some vary continuously — small changes in x produce small changes in f(x)
b) others vary erratically or jump
c¢) is fundamental to finding the tangent to a curve or the velocity of an object

Average Speed during an interval of time = distance covered/the time elapsed
(measured in units such as: km/h, ft/sec, etc.)

Adistance/Atime

a) free fall = (discovered by Galileo) a solid object dropped from rest (not moving) to fall

freely near the surface of the earth will fall a distance
proportional to the square of the time it has been falling

y = 16t2 vy is the distance fallen after t seconds, 16 is constant of
proportionality

ex. A rock breaks loose from a cliff, What is the average speed
a) during first 4 seconds of fall
b) during the 1 second interval between 2 sec. And 3 sec.

a) Ay 16(4)2-16(02 256

At 4-0 4 64ft/sec
c) 16(3)?-16(2)? 80 ft/sec
3-2

Average Rates of Change and Secant Lines: find by dividing the change in y by the length of the

interval:
Average rate of change of y = f(x) with respect to x over interval [x1,X2]

Ay = f(x2) — f(x1) = f(xo+h)—f(x1)
AX X2 — X1 h h#0




**Geometrically the rate of change of f over the above interval is the slope of the line through two
point of the function(curve) = Secant
Example 3 and Example 4 p. 75 of book

LIMITS: Let f(x) be defined on an open interval about c, except possibly at c itself
** if f(X) gets very close to L, for all x sufficiently close to ¢ we say that f
Approaches the limit L written as:

Lim f(x) =L “the limit of f(x) approaches ¢ =L (in book call ¢ xo)
X> C
** underlying idea of limit — behavior of function near x=c rather than
atx=c¢
** when approaching from left and right — must approach same #, not
Different or else no limit exists

Ex. suppose you want to describe the behavior of: when X is very close to 4
f(x) =.Ax* - .8x3 + 1.6x2+2x — 8
X—4
a) first of all the function is not defined when x = 4

b) to see what happens to the values of f(x) when X is very close to 4,
observe the graph of the function in the viewing window 3.5<x<4.5 and
0<y<3 -- use the trace feature to move along the graph and examine
The values of f(x) as x gets closer to 4 (can use table function on calc)

c) also notice the “hole” at 4

d) the exploration and table show that as x gets closer to 4 from either side
(+/-) the corresponding values of f(x) get closer and closer to 2.

Therefore, the limit as x approaches 4 = 2 limf(x) =2
x> 4

Identity Function of Limits: for every real number c, lim x =c¢

X>C

Ex. imx=2
X2

Limit of a Constant: if d is a constant then limd =d
X=>C

Ex. Im3=3 lim4 =4

X>3 X >15

Nonexistence of Limits (limit of f(x) as x approaches ¢ may fail to exist if:
#1. f(x) becomes infinitely large or infinitely small as x approaches ¢ from either side




Ex. lim 1
x>0 2 * graph in calculator — as x approaches 0 from the left
or right the corresponding values of f(x) become larger
and larger without bound — rather than approaching 1
particular number — therefore the limit doesn’t exist!!

#2. f(x) approaches L as x approaches ¢ from the right and f(x) approaches M with M#L,
as x approaches ¢ from the left.
Ex. lim [x|
x>0 *function is not defined when x=0. and according to def. of
absolute value, [x| = x when x>0 and |x| = -x when x<0 so
2 possibilities: if x>0 then f(x) =1
If x<0 then f(x) =-1
* if x approaches 0 from the right,(through + values) then
corresponding values always are 1
*if x approaches 0 from the left (-values) then correspond.
values are always -1
** 50 don’t approach the same real # as required by def. of limit —

Therefore, the limit doesn’t exist

#3. f(x) oscillates infinitely many times between numbers as x approaches ¢ from either
Side.
Ex. lim sinx
x>0 x **|f graph in calc. — see that the values oscillate
between -1 and 1 infinitely many time, not
approaching one particular real number — so

limit doesn’t exist.

Calculating using the Limit Laws:
If L,M,c and k are real numbers and:
limf(x)=L and limg(x)=M then

X>cC X>C

#1. Sum Rule:lim (f+g)(x) = lim[f(x) + g(X)] =L+ M

X>C X>C

#2. Difference Rule: lim(f-g)(x) = lim[f(x) — g(x)] = L-M

X>cC X>C

#3. Product Rule: lim(f-g)(x) = lim[f(x) - g(x)] =L- M
X >C X>C

#4. Quotient Rule: lim f(x)= L
20 ox) M M#0

#5. Constant Multiple Rule: lim(k-f(x)) = k-L

X >C

the limit of a constant times a function is the constant times the limit




#6. Power Rule: if r and s are integers with no common factors and s#0 then:
lim Vf(x) = VL

X>C

** |_imits of Polynomial/Rational Functions can be found by substitution:
» Iff(x) is a polynomial function and c is any real #, then

lim f(x) = f(c)
X>c **plug in ¢ in the function**
ex. lim (x2+3x-6) = limx2 + lim 3x — lim 6 (sum and difference rule)
X > -2 x> -2 X>-2 X> -2

limx-limx+1lim3-limx—lim6 (product rule)

limx-limx+3limx-6 (limit of a constant rule)
(-2) (-2) +3(-2) -6 (limit of x/Identity rule)
=-8

Ex. lim x3-3x2+10 (donein1lstep) 23-3(2)2+10 6

X>2 x2.-6x +1 22-6(2)+1 -7 = -.857
** Substitution in a Rational Function works only if the denominator is not zero at the limit point c. —
if itis: cancelling common factors in the numerator and denominator may create s simplified fraction
where substitution may be possible:

Ex. im=x2-2x-3

>3 x-3 ** denom. Is 0 at x=3, so try to simplify
= (x-3)(x+1)
X—3 ** cancel out new fraction = x +1

=(3)+1=4  **can substitute now bc won’t be 0 at 3

** creating a common factor so can substitute
Ex. lim Vx*+8 -3
X>-1 X+1

lim (Vx2+8 -3) (Vx2+8 +3)
1 x+1 (\x+8 +3)

= (x2+8) — 9
(x+1)(\Vx*+8 +3

= (x+1)(x-1)
(x+1)(Vx2+8 +3

= x-1




(Vx2+8 +3  (now can substitute -1)
=-1/3

Sandwich Theorem: refers to a function f whose values are sandwiched between the
values of 2 other functions g and h that have the same limit, L, the values
of f must also approach L:

Suppose that g(x)<f(x)<h(x) for all x in some open interval containing c,
except possibly at x =c itself. Suppose also that:

limg(x)=limh(x)=L thenlimf(x)=L

X>C X>cC X>cC

Ex. if V5 —2x2 < f(x) < V5 - x2 for -1<x<1 find lim f(x)

x>0

V5 -2(0) <f(x) <5 — (0)? V5<f(x)<V5

Theorem 5:
If f(x) < g(x) for all x in some open interval containing c, except possibly at
X = ¢, itself, and the limits of f and g both exist as x approach c, then:

lim f(x) < lim g(x)

X>C X>C

The Precise Definition of a Limit

Let f(x) be defined on an open interval about (c), except possibly at (c) itself. We say that the limit of
f(x) as x approaches (c) is the number L and write:
Limf(x) =L
x> e if for every number € > 0, there exists a corresponding
number & > 0 such that for all x

O0<|x—¢|<d and [f(x)-L|<eg

*¢ = indicates how close f(x) should be to the limit (the error tolerance)

*d = indicates how close the ¢ must be to get the L (distance from c)

Using the Definition Example:

Ex. Prove thatthe lim (2x +7) =9
x>1

Steps: 1. c=1,and L =9 so O<|x - 1|<d and |(2x+7) - 9|<e
Step 2: in order to get some idea which 6 might have this property work




backwards from the desired conclusion:
|(2x+7)-9|<e
|2 - 2|<e
|2(x-1)|<e (factor out common)
2] [x-1l<e
2|x-1]<e (divide by 2)
= |X-1|<e/2 -- this says that &/2 would be a good choice for 6
Step 3: go forward:
[X-1]<e/2 (get rid of 2 by multiplying on both sides)
2|x-1<e
[2][x-1]<e
[2(x-1)|<e
|2x-2|<e (rewrite -2 as 7-9)
|(2x+7)-9|<e
If(X) - 9]<e  therefore: &/2 has required property and proven

Finding § algebraically for given epsilons

The process of finding a 6>0 such that for all x:
O<|Xx—c|<d  ----- [f(X) - L|<e can be accomplished in 2 ways:

1. Solve the inequality |f(X) - L|<e to find an open interval (a,b) containing xo On
Which the inequality holds for all x# ¢

2. Find a value of >0 that places the open interval (¢ — 9, ¢ + 8) centered at xo inside the interval
(a,b). The inequality |f(x)-L|<e will hold for all x#c in

This &-interval

Ex. Find a value of 6>0 such that for all x, 0<[x-¢c|<d ---- a<x<b
If a=1 b=7 c=2 S0 1<x<7

Step 1: [X-2|<d --- -0<x-2<§ --- -0+2<x<0+2
Step 2: @) -6t2=1 -0=-1---6=1

b) 6+2=7 &=5 **closer to a endpoint
therefore: the value of 6 which assures [x-2|<60 1<x<7 is smaller value 6=1

Ex. Find an open interval about ¢ on which the inequality |f(x) - L|<¢ holds. Then give a value for 6>0
such that for all x satisfying 0<[x-c|<d the inequality [f(x)-L|<¢ holds.
If fx)=Vx L=Y% c=Y% &=0.1

Step 1: [Vx -%4|<0.1 --- -0.1<Vx - %<0.1 -  0.4<\x<.6 -- 0.16<x<.36
Step 2: O<|X-Y4<d --- -0<x - V4<d --- -0+Va<x<d+Y%

a) -0+%=.16 -- -5.=-09 -- 5=.09

b) 8+%=.36--- 5=.11

Therefore, 6=.09




Ex. With the given f(x), point ¢ and a positive number &, Find L = lim f(x)

X>X

then find a number 6>0 such that for all x
f(x)=-3x-2 Xo=-1 &=.03 lim (-3x-2) = (-3)(-1)-2=1

Step 1: [f(x)-Li<e = |(-3x-2)-1|<.03 =-.03<-3x-3<.03 =-1.01<x<-.99
Step 2: [X-Xo[<d = [x-(-1)[<d = -0<x+1<d = -5-1<x<5-1

a) -6-1 =-1.01 distance to nearer endpoint of -1.01 = .01

b) 6-1=-.99 distance to nearer endpoint of -.99 =.01 therefore: 6=.01

Two Sided Limits — what we dealt with in section 1, as x approaches c, a function,f,
Must be defined on both sides of ¢ and its values f(x) must approach
L as x approaches ¢ from either side.

One-Sided Limit —a limit if the approach is only from one side.
a) Right-hand limit = if the approach is from the right

limf(x) =L
x> ¢+
where X>c
b) Left-hand limit = if the approach is from the left
limf(x)=L

X > C-

where x<c
** All properties listed for two sided limits apply for one side limits also.

Two Sided Limit Theorem; a function f(x) has a limit as x approaches c if and only if it
has left-handed and right hand limits there and the
one sided limits equal:
limf(x)=L ifandonlyif: limf(x)=L and limf(x)=L

X>cC X >C- X> c+

Precise Definitions of Right Hand and Left Hand Limits:
F(x) has right hand limit at xo(c) and write:
lim f(x) =L

X>X

0 if for every number £>0 there exists a corresponding number 6>0
such that for all x =~ Xo<x<xo+d ---- |f(X) - L|<¢

f(x) has left hand limit at xo(c) and write
limf(x) =L
X%, if for every number >0 there exists a corresponding number 6>0

such that for all X Xo-6<x<xo ---- [f(X) — L|<e




Theorem 7 involving Sin. — in radian measure its limit as ®=2>0=1 so...

lim =sin®@ =1 (® in radians)
0->0 ®
Finite Limits as x 00 (have outgrown their finite bounds)

Definition: Limit as x approaches « or -co:
1. say f(x) has the limit L as x approaches infinity and write:

limf(x) =L
x> if, for every number £>0, there exists a corresponding
number M such that for all x: x>M

2. say f(x) has the limit L as x approaches minus infinity and write:
limf(x)=L
X0 if for every number £>0, there exists a corresponding

number N such that for all x ;: x<N

Properties of Infinite Limits:

1. limk=k Constant function
X400

2. lim 1=0 Identity function
X=>+00 X

3. Sum, Difference, Product, Constant Multiple, Quotient, Power Rule all the same
with infinity limits as with regular limits.

Limits of Rational Functions: -- divide the numerator and denominator by the highest
power of x in the denominator.—what happens depends
then on the degree of the polynomial:

a) numerator and denominator of the same degree ex. 8 p. 109
b) numerator degree less than denominator degree ex. 9 p. 109

Horizontal Asymptotes
A line y = b is a horizontal asymptote of the graph of a function y = f(x) if either:
limf(x)=b or limf(x)=b

X> © X = -0

for the graph on p. 109 of the polynomial function — the as you approach 5/3 from the left and the right,
the curves go to o and -co ---the asymptote serves as like a stop sign that turns the curve towards

infinity

Oblique (slanted) Asymptotes: if the degree of the numerator of a rational function is one greater
than the degree of the denominator.




Infinite Limits and Vertical Asymptotes

Ex. Findthelim 1

x>0+ 3x =
lim 1

x->0- 3X = -00

so lim 1

x>0 3% does not exist because the limits are not the same

Ex. Find lim 4
T (X-T)2 (check 7-and 7* both are oo, so limit exists as o)

Vertical Asymptote — a line x = a is a vertical asymptote of the graph of a function
y=f(x) if either  lim f(x) =400 or lim f(x) =+o0

X 2>at X >a-

** many times a graph will have both a horizontal and vertical asymptote

Ex. Find the horizontal and vertical asymptotes of the curve:

o~

Y=x+
X—3
a) vertical asymptotes — look at denominator — what would make it =0 (3)
so the vertical asymptote will be at 3
b) horizontal — since first term in numerator and denominator are the same
degree, look at the # in front of the terms = 1 (or view it as
dividing x+2 into x+3 that will end up with a remainder of 1

Find the horizontal and vertical asymptotes of f(x) = -8
x2-4

** The curves of y = sec x amd y = tan x have infinitely many vertical asymptotes at the odd multiples
of /2

** The curves of y = csc x and y = cot X have infinitely many vertical asymptotes at the
Odd Multiples of
(pictures on p. 119)

Rational Functions with degree of Numerator greater than degrees of denominator:
a) need to determine the horizontal asymptote by dividing numerator into denominator:

Ex. y=x2-4
x-1

Vertical Asymptote =1 (bc ma%%-th&denominator =0)




Horizontal Asymptote = x-1 x2-4
=x+1-3
x—1
**whenever the Numerator is larger than denominator — will get an OBLIQUE ASYMPTOTE —
which is a diagonal line through 1

a) the x+1 in the horizontal asymptote dominates the asymptote when x is

numerically large, and the remainder part dominates when X is
numerically small. These are therefore: Dominant Terms

------------------------------------------------------ Continuity

Continuous — if you can draw a graph of f(x) at or a certain point without lifting your pencil.

Discontinuous — anytime there is a break, gap or hole at a point in the curve
a) point of discontinuity — the point where the gap/jump is

Right-Continuous — continuous from the right — at a point x=c in its domain if
lim f(x) = f(c)

X > c+

Left-Continuous — continuous from left- at a point c if lim f(x) = f(c)
X >C-

Continuity at a point:
#1 At an Interior Point — if function y = f(x) is continuous on interior point c of its
domain if: lim f(x) = f(c)
X>C
#2. At an Endpoint — y=f(x) is continuous at a left endpoint a, or at right endpoint b, if:
Lim f(x) = f(a) or lim f(x) = f(b)

X > a+ X->b-

Ex. Without graphing, show that the function f(x) = V2x (2 — x) is continuous at x = 3

_ 2
step 1: show f(3) = V2x(2 — X) = \2(3) - (2-3) =6
X2 32 -9

step 2: show limf(x) = lim \2x (2-x) = limit of quotient lim ¥2x (2-x)

X>3 x> 3 X2 “m X2

= lim \2x - 1lim(2 —x) limit of a product
lim x2

=1im2x - lim(2 = x) = limit of a root

lim x2




=¥6-(-1) =16
9 9

** 50 lim f(x) = f(3) and is continuous at x = 3

Definition of Continuity/Continuity Test:

A function f(x) is continuous at x = ¢ if and only if it meets the following 3 conditions:
1. f(c) exists — c lies in the domain of f

2. lim f(x) exists (f has a limit as x approaches c)

X->C

3. lim f(x) =f(c) (the limit equals the function value)
X >C

Continuity of Special Functions:
a) Every polynomial function is continuous at every real #
b) Every rational function is continuous at every real # in its domain
c) Every exponential function is continuous at every real #
d) Every logarithmic function is continuous at every positive real #
e) F(x) =sinx and g(x) = cos x are continuous at every real #
f) H(x) =tan X is continuous at every real # in its domain

Continuity on the Interval: - a function is continuous on the interval if and only if it is
continuous at every point of the interval.

- a function is continuous on the closed interval [a,b] provided that f is continuous from the right at x=

a and from the left at x=b and continuous at every value in the open int. (a,b)

Properties of Continuous functions:

If the functions f and g are continuous at x=c, then the following combinations are continuous at x = ¢
Sums: f+g

Differences: f-g

Products: f-g

Constant Multiples: k-f for any # k

Quotients: f/g provided g(c)#0

Powers: 7 provided it is defined on the open interval containing c, and r,s are integer

I A A

Continuity of Composite Functions: the function f is continuous at x=c and the function g is
continuous at x = f(c), then the composite function gef is continuous at x = c.

Ex. Show that h(x) = Vx3-3x2 + x + 7 is continuous at x = 2
Steps: first show f(2) = 23-3(2)?+2+7 =5
Then check g(x) = Vx which is continuous b/c by power property Vlimx=\/5
X_35
So, with ¢=2 and f(c)=5, the composite function gef given by:
(2°D(0=(@(f(x))=g*-3xcHT) = - BH T

Ex X2/3




1+x* is this continuous everywhere on their respective domains
Yes, because the numerator if a rational power of the identity function, and the
Denominator is an everywhere positive polynomial

Continuous Extension to a Point — often a functions (such as a rational function) may have a

limit even at a point where it is not defined.
**if f(c) is not defined, but limx_f(x) = L exists, a new function rule can be
defined as:
f(x) = f(x) if X is in the domain of f
L if x =c

** in rational functions, f, continuous extensions are usually found by cancelling common

factors.
Ex. show that f(x)=x2+x -6 has a continuous extension to x=2, find the
X2-4 extension
steps: first factor (x-2)(x+3) = (x+3) which is equal to f(x) for x#2, but is
(x-2)(x+2) (x+2)  continuous at x=2
Shows continuous by plugging in 2 to new function
(2+3)= 5

(2+2) 4 ** have removed the point of discontinuity at 2

Intermediate Value Theorem for Continuous Functions

**A function y = f(x) that is continuous on a closed interval [a,b] takes on every value between f(a) and

f(b). In other words, if yo is any value between f(a) and f(b) then
Yo = f(c) for some c in [a,b]

e What this is saying Geometrically is that — any horizontal line y=yo crossing the y-axis between

the numbers f(a) and f(b) will cross the curve y=f(x) at least once over the interval

e Look at figure on p.131
e For this theorem-the curve must be continuous with no jumps/breaks

e This theorem tells us that if f is continuous, then any interval on which f changes signs contains

a zero/ root of the function

Tangents and Derivatives
Geometrically speaking — what is a tangent line?

We will now study it a bit further — finding the tangent to an arbitrary curve at point
P(Xo,f(Xo)




To do this we must:
1. calculate the slope of the secant through P and a point Q(xo+h, f(xo+h))
2. Then investigate the limit of the slope as h approaches 0
a) if limit exists—we call it the slope of the curve at P and define the tangent at P to be the
line through P having this slope

The slope of the curve y=f(x) at the point P(xo,f(x0)) is the following:

m= lim f(xo+h) — f(xo)

h o h (provided the limit exists)

The tangent line to the curve at P is the line through P with this slope.
Y=Yo + m(X-Xo)

Difference Quotient of F:  f(xo + h) — f(xo)

h
a) has a limit as h approaches 0 called the derivative of f at Xo
1) if interpreted as the secant slope—the derivative gives the slope of the curve and tangent
at the point where x=Xo
2) if interpreted at the average rate of change (as in 2.1) — the derivative gives the
function’s rate of change with respect to x at x=xo

Ex. Find an equation for the tangent to the curve at the given pt. Then sketch the curve and tangent
together.
y=(x-1)2+1 atpt (1,1)
= lim [(1+h-1)2+1- [(1-1)2+1] = lim h?
x 0 h h
=1lim h =0 (b/c constant), soat (1,1) y=1+0(x-1), y=1 is tangent line

Ex. Find the slope of the function’s graph at the given pt. Then find an equation for the line tangent to
the graph there.

F(x) =x-2x2 (1,-1)

Lim [(1+h)-2(1+h)?]-[1-2(1)?] = (1+h-2-4h-2h?) + 1 =lim h(-3-2h) =-3

X0 h h h

At (1,-1) =y +1 =-3(x-1)
Identifying Discontinuities
The three types of discontinuities are easily identified by the cartoonish graphs found in the textbook.

However, hole and jump discontinuities are invisible on graphing calculators. Therefore, you must be
able to identify the discontinuities algebraically.




Zeros in Denominators of Rational Functions: could be removable or nonremovable
discontinuities.

Holes in Piecewise Functions: these occur when there is a singular x-value that is not in the
domain of the function.

Steps in Piecewise Functions: these occur when the endpoints of adjacent branches don’t match

up.

. Toolkit Functions: you must be familiar enough with the elementary functions to be able to
identify vertical asymptotes, i.e. tan(x) and In(x).

Plot with a Calculator: for unfamiliar functions, you may be able to identify vertical asymptotes
and steps by simply graphing the function. However, remember that holes cannot be seen on the
graphs of calculators. Also, you may want to plot the functions in “dot mode” so that vertical
asymptotes don’t appear to be part of the function.

. TABLE: If you suspect that there is a discontinuity at a particular x-value, check the table on
your calculator. If an x-value has an ERROR, then there is a discontinuity.
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DIFFERENTIATION:

Derivative, Derivatives of Sum, Differences, Product & Quotients, Chain Rule, Derivatives of
Composite Functions, Logarithmic Differentiation, Rolle’s Theorem, Mean Value Theorem,
Expansion of Functions (Maclaurin’s & Taylor’s), Indeterminate Forms, L’ Hospitals Rule, Maxima
& Minima, Curve Tracing, Successive Differentiation & Liebnitz Theorem.

I. Notations for the Derivative

The derivative of y = f (x) may be written in any of the following ways:

f@, vy, L L@l or Dlfeol:

I1. Basic Differentiation Rules

A. Suppose ¢ and n are constants, and f and g are differentiable functions.

(1) f(x)=cg(x)
f'(x) = lim 1h)-Th 5 lim M:(:"m 9()-9(x)

=¢g’(x)
b—x b—x b—x b—Xx bsx DB—X

) f(x)=90()xk(x)

£100 = fim @ F0 _ o 9O £kO]-[909 k()]

b—sx D—X b—x b—x

lim Mi fim <O =K _ g0 1 k)
b—x —X bsx D—X

(3) () =g()k(x)

£100 = fim @ =T _ o 90kb) - g(x)k(x) _

b—»x D=X b—x b—x

. 9(b)k(b) — g(B)k(x) + g(B)k(x) = g ()k(x) _
im — =

b—x




[nm g(b)}{lim k(bg‘k(x)Hlim k(x)}{limw} _

b—sx b—sx b—sx b>x D—X

g(x)k'(x) +k(x)g'(x) (Product Rule)

) f(x) =% = FOOk(X) = g(x) = g'(x) = (k' (x) +k(x) F'(x) =

| | g'(x)—[g(x)}k'(x) , |
g 2 9 R = OO _ k9" k(0900 - 900K ()

k() k() KOO

This derivative rule is called the Quotient Rule.

(5) f(x)=c
, . f)-f(x . Cc-cC )
f(X)=I|mM=I|m =lim ——=1lim 0=0
b—x b—x b—>xb_X b—>xb—x b—x
6) f(x)=x
, . fb)-f(x . b-x
f'(x) = lim TO=TH) lim ——=lim 1=1
b>x B—X b>xP—X pox
7 f(x)=x"
, o f(x+h)=f(x) . (x+h)"=x"
f'(x) = lim G+ ) ()=I|m—( ) =
h—0 h h—0 h
{x“ + nx”_lh+n(nz_1)x”_2h2 +..}—xn
lim =
h—0 h
_nxn—lh hZ(n(n l) n—2+ j
lim =
h—0 h

lim | nx"1 + h[@ X2 4 ﬂ =nx""1 (Power Rule)
h—0L

Example 1: Suppose f and g are differentiable functions such that f (1) =3,

g =7, ') =-2,and g'()) = 4. Find (i) (f +9)'@, (i) (9-f)'QD),




(iii) (fg)'@), (iv) (%) (1), and Gj ).
(i) (f+9)Q=f'Q)+g'D)=-2+4=2
(i) (a-HD=9'Q-f'Q=4-(-2)=6
(iii) (fg)M=fOI'W+9@f'@Q)=3(4)+7(-2) =12+ (-14) = -2

(iv) (%J 0 - FOIM-9Wf'Q) _3(4)-7(-2) _12+14 _26

[f@F 3’ o 9
V) ( f j = 90f ') - f2(1)g'(1) _ 7(—2);3(4) _-14-12_-26
g [9)] 7 49 49

Example 2: If f(x) = x4 —3x3 +5x2 —7x+11, find f'(x).

f/(x) = 4x° —3(3x?) +5(2%) = 7(1) + 0 = 4x> —9x% +10x - 7

Example 3: If f(x)=4\/§—i+§_l

then find f'(x).

_2
f(x)=4ﬁ_i+§—l:4x% —3x A +5x 1 _7x P =

AR

f'(x)=4£%x 2}—3(—%x 3J+5(—1x‘2)—7(—5x_6):
- 9% s e P S ) 5 35
2X %‘FZX A—SX +35X :ﬁ‘i‘ﬁ—?‘f—x—e

x2+2x—3

Example 4: If f(xX)=——————, thenfind f'(1).
3x—4
f,(x)_(3x—4)(2x+2)—(x2+2x—3)(3)_6x2—2x—8—3x2—6x+9_
(3x—4)° (3x—4)2
3

2 2 _
3)(—8)(_2'_1:]"1 :3(1)—8(1);1:_4:_4 or

(3x—4) [30) -4] !

t = BO-420 +2]-1° +20)-313) _ (D4 -(O)E) _ -4

=4
3 - 4F (-1)? 1

Trigonometric functions




(1) f(x)=sinx
£/00 = fim ~CH =)y
h—0 h h—0 h

sin(x+h)—sinx _

sinxcosh+ cosxsinh—sin x i sinx(cosh—1) + cosxsinh

lim
h—0 h h—0 h

(sinx){ lim COSh_l} + (cosx)[ lim ﬂ} = (sinx)(0) + (cosx)(1) = cos x
ho D h—o N

(2) f(x)=cosx

f(x+h)—f(x) cos(x+h)—cosx:

f'(x) = lim = lim
h—0 h h—0 h
. cosxcosh-sinxsinh—cosx .. cosx(cosh—1)—sinxsinh
lim = lim =
h—0 h h—0 h

(cosx)[nm C“'”} = (Sinx){lim ﬂ} = (cosx)(0) — (sinx)(1) =
h—0 h h—0 h

—sinXx

3) f(x):tanx:ﬂ
COSX

2 2

f,(x):(cosx)(cosx)—(5|2nx)(—smx):cos x+25|n X _ 12 —sec? x
(cosx) COS”~ X C0S“ X
(4) f(x)=secx=———
COSX
f,(x):(cosx)(O)—l(—smx): sinx 1 sinx _ seextan x
(cosx)2 cos? x COSX COSX
(5) f(x):cscx:_i
sinx
£r(x) = (sinx)(0) —1(cosx) _ —cosx _ _—1 .c?sx — _csexcotx
(sinx)? sin2x  sinx sinx

(6) f(x)=cotx :C_Oi
sin x




: . anc? v cin? _
f,(X):(smx)(smx) (cosx)(cosx): cos x2 sin” x _ 21 _ _esc? x

(sinx)2 sin“ x sin“ x

C. Composition and the generalized derivative rules

(1) f(x¥)=(g°k)(x) = g(k(x))

f'(x) = lim M: iim 2KO)—gk()) _ . 9k®) - gk(x))
b—>x —X b—x b—x b—sx b—x
k(b) —k(x) _ g(k(0) —g(k(x)) . k() —k(x) _

KO-k oM T kD) —k() oM bx

: gk(b)-gk(x) . k(b)—k(x) _
k(b)"Tk(x) k(b) —k(x) t!ILnx b—x

9'(k(x))-k'(x).

This derivative rule for the composition of functions is called the Chain Rule.

(2) Suppose that f(x) = g(k(x)) where g(x) =x". Then f(x)=[k(x)]".
g(x) =x" = g'(x) =nx"t = g'(k(x)) = n[k()]" L. Thus, f'(x)=
g'(k(x))-k'(x) = n[k(x)]" "L -k'(x). This derivative rule for the power of a
function is called the Generalized Power Rule.

(3) Suppose that f (x) = g(k(x)) where g(x) =sinx. Then f(x)=sin[k(x)].
g(x) =sinx = g'(x) = cosx = g'(k(x)) = cos[k(x)]. Thus, f'(x) =
9'(k(x))-k'(x) = cos[k(x)]-k'(x) .

(4)  Similarly, if (x)=cos[k(x)], then f'(x)=—sin[k(x)]-k'(x).
(5)  If f(x)=tan[k(x)], then f'(x)=sec’[k(x)]-Kk'(x).

(6) If f(x)=sec[k(x)], then f'(x)=sec[k(x)]Jtan[k(x)]-k'(x).
(7)  If £(x)=cotk(x)], then f'(x)=—csc*[k(x)]-k'(x).

(8)  If f(x)=csck(x)], then f'(x) =—csck(x)lcotk(x)]-k'(x).
Example 1: Suppose f and g are differentiable functions such that:

f=9 f@=-5 9gB=2 9(9) =3
f'Q)=—2 f@=-6 gO=4 g@O=7

Find each of the following:

() (f9)®;




(i) (9 f)'D);

(i) h'@) if h(x) = f(x);
(V) J'Q if j()=[g()I°;

W) Q) i 1) = —
[f(

"

(vi) s'@@) if s(x) =sin[f(x)]; and
(vii) m'(D) if m(x) =sec[g(x)].

) (fo9)@="1(gM)-9'D)=1(2)-9'(W) = (-6)(4) = -24
(i) (g HYM=9'(fD)- f'W=9'9)-f'W)=7(-2)=-14

(i) 100 =700 =[F001'2 = W) = 1F001 72 109 = -0

h'() =
(iv) j(x) =[g()]° =

3
F(x)]

(V) 1(x) =
[

quumrﬁjwnz

f') -2 1

2Jf) 249 3

2f()

') =591 g'() = ') =5[g]* - 9'(W) =
5(2)%(4) = 320

-6f'0) _-6(-2)_12 _ 4

[fQPF

93 729 243

6[f ()] /(0 =1'() =

(vi) s'(x) =cos[f (x)]- f'(x) = s'(@) =cos[f@)]- f'(D) =cosQ)-(—2) =—-2cos9

(vii) m’(x) =sec[g(x)]tan[g(x)]- g'(x) = m'(1) = sec[g(D]tan[g(1)]- 9'(1) =
sec(2)tan(2)-4 = 4sec2tan2

Example 2: If f(x)=%/2x4

—x% +5x+2 , then find f'(2).

f(X)=’°\’/2x4—x2 +5x+2 = (2x* —x? +5X+2)% = f'(x) =

_2
}é(2x4—x2 +5X+2) A(8x3—2x+5):

g-2+5 11 11

f'(1) =

Example 3: If g(x) = ——3

90 = —5—

(x

Y (2-1+45+2)% 364 12

(3 » , then find g'(x) .
X° +

s =403 +4) P = g'(0) =
+4)

8x> —2x +5
3%/(2x4 ~x? +5x+2)2

—96x2

—32(x +4)_ (3x )= 3
(x +4)




Example 4: If h(x) =sin(cosx), then find h'(x).
h’(x) = cos(cosx) - (—sinx)

Example 5: If j(x) = tan(2x? —3x +1), then find j'(x).
J'(x) = sec? (2x2 —-3x+1)-(4x-3)

Example 6: If k() = x?/3x+ 4, then find k’(x).

K(X) = x2/3x + 4 = X2 (3x + 4)% = k'(X) = xz{% (3x + 4)‘%(3)} +

(3X+4)%(2X) _ N 2x(3x+4)% _3x% +4xX(3x+4)
22 2ax+4) 2
15x% +16x
2(3x+4)%
.

4

2x-1 , then find 1'(x).

3x+4

Example 7: If 1(x) :(

, %1 Bx+0)@-@x-1B) | 4@x-n3] 11 |_
"0 =4 2 = 3 2|~
3x+4 (3x +4) (3x+4)° | (3x+4)
44(2x -1)*
(Bx+4)°
Example 8: If k(x) =—>"%_ then find k().
1+ cosx

2 2

K'(X) = (L+cosx)(cosx) —(sinx)(—sinx)  cosSx+C0s” X+sin“ X
@+ cosx)2 @+ cosx)2
cosx+1 1

(1+cosx)2 1+cosx’

Example 9: If s(x) = sing(x2 —1), then find s'(x) .

s(x) =sin®(x% =1) =[sin(x? =D = s'(x) = 3Ysin(x® —1]% - cos(x? —1) - 2x =

6xsin2(x2 -1) cos(x2 -1).

Implicit Differentiation




Example 1: Find the slope of the tangent line to the circle x? + y2 =25 at the
point (3, 4).

(O’ 5) A

3. 4)

(_ 51 0) X

y

N
(0,-5) 8
Solution 1 : A circle is not a function. However, x2 + y2 R y2 =

25-x% = y=1v25— X2 = y=v25- x2 is the equation of the upper
half circle and y = —J 25— X2 is the equation of the lower half circle.

Since the point (3, 4) is on the upper half circle, use the function f(x) =

V25— x2 =(25—x2)% = f/(x) =%(25—XZT%(—ZX) :ﬁxx?j

-3 _ 3

=f'(3) = B = et
" ® \/25_33 J25-9 16 4

Sometimes, an equation [x2 + y2 =25] in two variables, say x and v, is given, but it
is not in the form of y = f(x). In this case, for each value of one of the variables,

one or more values of the other variable may exist. Thus, such an equation may describe one or
more functions [y = V25— x2 and y=—V25- G ]. Any function

defined in this manner is said to be defined implicitly. For such equations, we may not be able to
solve for y explicitly in terms of x [in the example, | was able to solve

for y explicitly in terms of x]. In fact, there are applications where it is not essential

to obtain a formula for y in terms of x. Instead, the value of the derivative at certain

points must be obtained. It is possible to accomplish this goal by using a technique

called implicit differentiation. Suppose an equation in two variables, say x and y, is

given and we are told that this equation defines a differentiable function f withy =f(x). Use the
following steps to differentiate implicitly:

(1) Simplify the equation if possible. That is, get rid of parentheses by
multiplying using the distributive property or by redefining subtraction, and




clear fractions by multiplying every term of the equation by a common
denominator for all the fractions; simplify and combine like terms.

(2) Differentiate both sides of the equation with respect to x. Use all the relevant
differentiation rules, being careful to use the Chain Rule when differentiating
expressions involving y.

(3) Solve for ﬂ
dx

Note: It might be helpful to substitute f (x) into the equation for y before
differentiating with respect to x. This will remind you when you must use the

generalized forms of the Chain Rule. Since f'(x) = % you differentiate
X

with respect to x and substitute y for f(x) and % for f'(x). Then you can
X

9
solve for ﬂ .
dx

Solution 2: X% +y? =25= x2 +[f(X)]* =25= di(x2 +[F (O] = 25):
X

2%+ 2 (0]F/(X) = 0= £(x) = 2&2(2)]3%=;;‘3%

Example 2: Suppose that the equation 2 +§ = x defines a function fwith y= f(x).

X Yy
Find % and the slope of the tangent line at the point (2, 3).
X
Solution 1: Solve fory. xy(g+§] = xy(X) = 2y +3x =X’y = y = 23X =
Xy X< -2

dy (x?>-2)(3)-3x(2x) -3x’>-6 dy ~18 9

ax 2 2 2 o2 x24T 2

dx (x° -2) (x°=2) dx 4 2

Solution 2: Clear fractions = 2y +3x = x2y = di(Zy +3x = xzy):>
X

2ﬂ+3:x2ﬂ+2xy:>ﬂ:3_zxy:>d -Xzzzﬂ:—g
dx dx dx x2_2 d y=3 2 2

Solution 3: i(g + 3 xj = i(ZX_l +3y 1= x):> —2x72 _3y~2 _ 1=
dx{x vy

dx dx
-2 3 dy 2 ody 2.2 dy —2y?-x%y?
— o=l 2yt -2 ey s 2 2
X y dx dx dx 3x
dy| -18-36 -54 9
dx[y5 12 12 2




Example 3: If cos(xy) =y, then find %
X

%(cos(xy) =y)= —sin(xy){ j + y(l)} = xsm(xy)—x— ysin(xy) =

% = —ysin(xy) = %(ﬂ xsin(xy)):

dy _ —ysin(xy)
dx 1+ xsin(xy)

10
IVV. Higher Order Derivatives

A. Notation

(1) 1% derivative (derivative of the original function y = f(x)): dy _ = f'(x)

2
(2) 2" derivative (derivative of the 1% derivative): M f"(x)
dx?
— I s d3y
(3) 3" derivative (derivative of the 2" derivative): s f"(x)
dx

B. Distance functions

Suppose s(t) is a distance function with respect to time t. Then s'(t) = v(t)

is an instantaneous velocity (or velocity) function with respect to time t, and
s"(t) = v'(t) = a(t) is an acceleration function with respect to time t.

Example 1: If f(x) = x? sinx , then find f'(x)and f"(x).

f'(x) = X2 COSX + 2XSin X

2

f"(x) = x2(—sin X) 4+ 2XCOSX + 2XCOSX + 2SIN X = —X“ Sin X + 4XCOSX + 2Sin X

Example 2: If g(x) = 2X+

e , then find g'(x) and g"(x).

(4x-5)(2) - (2x+3)(4) 8x-10-8x-12  -22

9'(x) = 2 = = > =—22(4x—5)"?
(4x-5) (4x-5) (4x-5)
g"(X) = 44(4x —5) "3 (4) =176(4x ~5) > = Lfsg
(4x—-5)
2 2 o ody dPy
Example 3: If x“ +y“ =25, then find —and —-.
dx dx?
d(x +y _25):>2x+2ydy 0= I _Z2X_=X
dx dx dx 2y y
dy —X
- (=x) | -y 2
d%y d(dyj g(—_XJy( )= )(dxj_ Y [yJ_—yZ—XZ_
dx2 dx\ dx dx y y2 y2 y3




—(x2+y2) =25

y3 y®

After reading this section, you should be able to

=

understand the basics of Taylor’s theorem,

write transcendental and trigonometric functions as Taylor’s polynomial,

3. use Taylor’s theorem to find the values of a function at any point, given the values of the
function and all its derivatives at a particular point,

4. calculate errors and error bounds of approximating a function by Taylor series, and

revisit the chapter whenever Taylor’s theorem is used to derive or explain numerical methods

for various mathematical procedures.

N

o

The use of Taylor series exists in so many aspects of numerical methods that it is imperative to devote a
separate chapter to its review and applications. For example, you must have come across expressions
such as

X2 X4 X6

cos(x):l—E+E_E+... (1)

: x> x> X

sm(x):x—§+a_ﬁ+... @)
X2 3

e =14+ X+ —+—+-- 3)
21 3

All the above expressions are actually a special case of Taylor series called the Maclaurin series.
Why are these applications of Taylor’s theorem important for numerical methods? Expressions such as
given in Equations (1), (2) and (3) give you a way to find the approximate values of these functions by
using the basic arithmetic operations of addition, subtraction, division, and multiplication.

Example 1
Find the value of e%* using the first five terms of the Maclaurin series.
Solution
The first five terms of the Maclaurin series for e*is
x2 x* X!
e 21+ X+—+—+—
20 3 4
0.25* 0.25° 0.25*
+ +
2! 3 41

e’ ~1+0.25+

=1.2840
The exact value of €®* up to 5 significant digits is also 1.2840.

But the above discussion and example do not answer our question of what a Taylor series is.
Here it iis, for a function f(x)

f(x+h)=f(x)+ f'(x)h+ fz(lx)h2+ f3$X)h3+"' @)
provided all derivatives of f(x) exist and are continuous between x and x+h.

What does this mean in plain English?

As Archimedes would have said (without the fine print), “Give me the value of the function at a single
point, and the value of all (first, second, and so on) its derivatives, and | can give you the value of the
function at any other point”.




It is very important to note that the Taylor series is not asking for the expression of the function
and its derivatives, just the value of the function and its derivatives at a single point.

Now the fine print: Yes, all the derivatives have to exist and be continuous between X (the point
where you are) to the point, x +h where you are wanting to calculate the function at. However, if you

want to calculate the function approximately by using the n™ order Taylor polynomial, then
1°t,2™ ..., n" derivatives need to exist and be continuous in the closed interval [x, x + h], while the

(n+1)™ derivative needs to exist and be continuous in the open interval (x,x + h).

Example 2

Take f(x)=sin(x), we all know the value of sin(%) =1. We also know the f’(x)=cos(x) and
co{%) =0. Similarly f"(x)=—sin(x) and sin(%) =1. Inaway, we know the value of sin(x) and

all its derivatives at x = % . We do not need to use any calculators, just plain differential calculus and

trigonometry would do. Can you use Taylor series and this information to find the value of sin(2)?
Solution

= 0.42920

So

F(x+h)= F(x)+ F(0n+ £7(x )"2' +f’”(x)h; f~~(x)ﬁ+

T
X==
2

h=0.42920
)

f(x)=sin(x), f(gjzsin@:l

£/(x) = cos(x), f@:o
f"(x)=—sin(x), f"(;rjz -1

.I: m( —COS(X) m(;z-j 0
.I: un( Sln(X) f uu(;[] 1

Hence

2 3 4
f(£+hj:f[£]+f'(zjh+f( jh + f ( jh f""(fjh—+---
2 2 2 2) 2 2)3 2) 4

2 3 4
0.42920) N 0(0.42920) +1(o.42920) .
2! 3l 4
=1+0-0.092106+0+0.00141393+ -
~0.90931

f(% + o.42920j =1+ 0(0.42920)—1(




The value of sin(2) | get from my calculator is 0.90930which is very close to the value | just obtained.
Now you can get a better value by using more terms of the series. In addition, you can now use the
value calculated for sin(2) coupled with the value of cos(2) (which can be calculated by Taylor series
just like this example or by using the sin® x + cos® x =1 identity) to find value of sin(x) at some other
point. In this way, we can find the value of sin(x) for any value from x =0 to 2z and then can use
the periodicity of sin(x), that is sin(x)=sin(x+2nz),n=12,... to calculate the value of sin(x) atany

other point.
Example 3
x* x* X
Derive the Maclaurin series of sin(x)=x——+—— " +-..
3 5 7
Solution

In the previous example, we wrote the Taylor series for sin(x) around the point x = % Maclaurin

series is simply a Taylor series for the point x=0.
f(x) sin(x), f(0)=0

f'(x)=cos(x), £'(0)=1

£"(x)=-sin(x), f (0)=0

f"(x)= —cos(x) f"(0)=—

f7(x) = sin(x), f"”o):o

f reee X) COS(X) f reee (O =1

Using the Taylor series now,
h? h?® h* h®
f ()= () £00n+ F7G0 T+ 70+ £ 005+ £ (x) o+

3 4 5
h? h® h* hS
f(0+h)=f(0)+ f'(O)n+ f "(O)E + f ”’(0)5 + f ””(O)T + f f"r'(o)? oo
h2 : h3 : h4 h5
f(h)=f(0)+ f'(Oh+ f "(0)5 + f "'(o)? + f W(O)T + f fw(o)? o

2 3 4 5
=0+1(h)- A LY LA
2! 3 4 5

h® h®
=h——+—+
3 9
So
x> x°
f(x):x—g g_
x> x°
sin(x) X= ot
Example 4

Find the value of f(6) given that f(4)=125, f'(4)=74, f"(4)=30, f"(4)=6 and all other higher
derivatives of f(x) at x=4 are zero.

Solution
h? h®
f(x+h)=f(x)+ f'(x)h+ f"(x)E+ f”’(x)§+
Xx=4




h=6-4
=2
Since fourth and higher derivatives of f(x) are zero at x=4.

f(4+2)=f(4)+ f'(4)2+ f "(4)2?7 + f "'(4)2—3

oo Z)Z)

=125+148+60+8

=341
Note that to find f(6) exactly, we only needed the value of the function and all its derivatives at some
other point, in this case, x=4. We did not need the expression for the function and all its derivatives.
Taylor series application would be redundant if we needed to know the expression for the function, as
we could just substitute x =6 in it to get the value of f(6).

Actually the problem posed above was obtained from a known function

f(x)=x®+3x* +2x+5 where f(4)=125, f'(4)=74, "(4)=30, f"(4)=6, and all other higher

derivatives are zero.

Error in Taylor Series

As you have noticed, the Taylor series has infinite terms. Only in special cases such as a finite
polynomial does it have a finite number of terms. So whenever you are using a Taylor series to
calculate the value of a function, it is being calculated approximately.

The Taylor polynomial of order n of a function f (x) with (n+1) continuous derivatives in the
domain [x, x+ h] is given by

f&+h%ﬁﬂ@+f(@h+f%@2;+m+fﬁxﬂ2%+RAx+m

where the remainder is given by
n+l
R (x+h)= " fog),
(n+1)!
where

X<Cc<X+h
that is, ¢ is some point in the domain (x,x + h).

Example 5

The Taylor series for e*at point x =0 is given by

2 3 X4 X5

e =14+ X+t —+—F—F—F---
20 3 4 5l

a) What is the truncation (true) error in the representation of e' if only four terms of the series are
used?
b) Use the remainder theorem to find the bounds of the truncation error.

Solution
a) If only four terms of the series are used, then
2 3
e 21+ X+ —+—
21 3




2 3

SRS

2" 3
=2.66667

The truncation (true) error would be the unused terms of the Taylor series, which then are

~0.0516152
b) But is there any way to know the bounds of this error other than calculating it directly? Yes,

f(x+h)=f(x)+ f'(x)h+-+ f(”)(x)h?:+ R, (x+h)
where

n+l
Rn(x+h):&f(”ﬂ)(c), x<c<x+h,and

(n+1)
¢ is some point in the domain (x,x+h). So in this case, if we are using four terms of the Taylor
series, the remainder is given by (x =0,n =3)

R,(0+1)= ((3%311)‘ f C9(c)

Since
X<c<X+h
O0<c<0+1
O<cxl

The error is bound between
e? e!

— <R (1)<—

24 ) 24

1 e
—< R, (1)< —
24 0 24
0.041667< R,(1) < 0.113261
So the bound of the error is less than 0.113261 which does concur with the calculated error of

0.0516152.

Example 6
The Taylor series for e*at point x =0 is given by

2 3 X4 X5

e =1+X+E+§+I+ﬁ+m
As you can see in the previous example that by taking more terms, the error bounds decrease and hence
you have a better estimate of e'. How many terms it would require to get an approximation of e
within a magnitude of true error of less than107° ?

Solution
Using (n+1) terms of the Taylor series gives an error bound of




R (x+h)= " g

(n+1)

x=0,h=1 f(x)=¢"

R (1) @™ o ()

(n+1)

(1)n+1 .

= e

(n+1)

Since
X<Cc<X+h
O<c<0+1
O<cx<l1
L _R@<-®

(n+1)! (n+1)!

So if we want to find out how many terms it would require to get an approximation of e* within a
magnitude of true error of less than10°°,

€ <10
(n+1)!

(n+1)!>10°
(n+1)!>10°x3 (as we do not know the value of e but it is less than 3).
n>9

So 9 terms or more will get e* within an error of 10°° in its value.

We can do calculations such as the ones given above only for simple functions. To do a similar
analysis of how many terms of the series are needed for a specified accuracy for any general function,
we can do that based on the concept of absolute relative approximate errors discussed in Chapter 01.02
as follows.

We use the concept of absolute relative approximate error (see Chapter 01.02 for details), which
is calculated after each term in the series is added. The maximum value of m, for which the absolute
relative approximate error is less than 0.5x10%™ % is the least number of significant digits correct in
the answer. It establishes the accuracy of the approximate value of a function without the knowledge
of remainder of Taylor series or the true error.

Indeterminate Form

I. Indeterminate Form of the Type %

We have previously studied limits with the indeterminate form o as shown in the

following examples:

2_ —_
Example 1: [im X 4:|im W:|im(x+2):2+2:4

x—2 X—2 x—2 /X*(Z/ x—2




sin3x

Example 2: |im tan3x:"m COS3X _ sin3x 1 1

x>0 SIN2X x50 SiN2X x>0 1 €0S3Xx Sin2x

3 sin3x 1 2X 3 3
3 ] ] Y
2(!@0 3x j(lxm cos3x}(!@o sin2xj 2( OO 2

[Note: We use the given limit |jm % =1.]

A—0

38+h -2 1 1 .
Example 3: |jm ————— = f'(8) = =-— . [Note: We use the definition
p Im ™ (8) g 12 [Note

of the derivative f’(a) =[lim fla+h)-f(a) where f(x) =%/x
h—0

h
anda=38]
Example 4: !Lr% Coxsi(# = f ’(%): —sin(%): _\/_%. [Note: We use the

where

definition of the derivative f'(a) = lim

f(x)-f(a)
—a X
f (x) =cosx and az% ]

However, there is a general, systematic method for determining limits with the

indeterminate form % . Suppose that f and g are differentiable functions at x = a

and that |im ) is an indeterminate form of the type %; thatis, |im f(x)=0

X—a g(X) X—a
and |Jim 9(x) =0. Since f and g are differentiable functions at x = a, thenfand g

X—a

are continuous at x = a; thatis, f(a)=|im f(x)=0and g(a)=|im 9(x)=0.

X—a X—a

Furthermore, since f and g are differentiable functions at x = a, then f'(a) =

lim T=1@) g g'(@) = lim 9(9)-g(@) Thus, if g’(a) =0, then
x—a X—a x—a X—a
f(x) - f(a)
00 f0-f@ o xea  _t@_ . F0)
Mg "M g-g@ "W e0-0@ g@ Mo
X—a

g’ are continuous at x = a. This illustrates a special case of the technique known as
L’Hospital’s Rule.

L’Hospital’s Rule for Form %

Suppose that f and g are differentiable functions on an open interval containing x = a, except possibly at




X—a X—a X—a

X =@, and that |jm f(x) =0 and lima(x)=0. If |im% has a finite limit, or if this limit is
g'(x

fo) .. f'(x
+o0 or —co, then |im ——==lim—,—
x—a ( ) x»a g (X)

as x—a ,x—a",x—>—oo, oras X — +oo.

. Moreover, this statement is also true

In the following examples, we will use the following three-step process:

Step 1. Check that the limit of fE ; is an indeterminate form of type %
g(x

is not, then L’Hospital’s Rule cannot be used.

Step 2. Differentiate f and g separately. [Note: Do not differentiate

in the case of a limit

Ifit

100

g(x)

using the quotient rule!]

Step 3. Find the limit of r(x) . If this limit is finite, + o, or —co, then itis

9'(x)
equal to the limit of % If the limit is an indeterminate form of type
—, then simplify E ) algebraically and apply L’Hospital’s Rule again.
X = 2X
Example 1: |im =lim—=2(2) =4

x—2 X—2 x—2 1

2
Example 2: [im tan3x ) 3sec”3x _3(1) _3

50 SIN2X x>0 2€052X  2(1) 2

1 %
... ¥8+h-2 . §(8+h) o 1 1 1

Example 3: |im =lim =lim =

h—0 h h—>0 1 0’ 3(8 + h)/ 3(8)y 12

. COSX-— . —sinx . V3
Example 4: |lim /2 im ——=- |n(%)= -—

x> X—7% x> 1 2

3

Example 5: [im = = Jim &2 = im & = X [Use L’Hospital’s Rule

x—0 X x>0  2X x>0 2 2

twice.]

e e TRe B o
Example 6: !LQW_!LQW_!LM(:OS% —I—O,or




. 2 ) 22 2(0
lim % = lim - = lim— = ()=0Wherey:%.
X0 sm% yoot SINY  ysorcosy 1

Example 7: |im % = IirT(}) x( In x): 0(0) =0 [This limit is not an indeterminate

x—0

form of the type % , S0 L’Hospital’s Rule cannot be used.]

I1. Indeterminate Form of the Type 2
o0

We have previously studied limits with the indeterminate form % as shown in the following examples:

o0
3 5x 7 3.5 7
3% 4Bx—T . y2 42 2 _ X x2 .. 3+0-0 3
Example 11 |lim ————= lim ~ = lim —a = lim ==
Xx—+00 2X° —=3X+1 x>+ 2X 3X+1 Xt S L x54002-0+0 2

x_ 1 1
) 3x-1 : 2 2 . X 2 0-0 0
Example 2:  |im >—=lim X2 X~ lim >i Y _
+*7§ 2
X J X
x4 4
3 i N -
x° -4 3 3 3 s o _
Example 3: |im3 — = |imX2—X= lim =—2 320 3 limit does not exist.
x>0 2X"+1  x—>w2x® 1 X—)oog_i_i 0+0 0
X3 X3 X X3

2
/4X2 1 4x° +1

[,1.2 2
. 4x° +1 . : —4/X
Example 4:  fim ~————= lim —X—= lim — " (Vx* =
x—oo X+1 X—>—o0 Xx+1 Ko XF1
X X
_ 44 et
2 2 _
because x <0 and thus x=—vx2)= |im ———~——= |im X - \/Z:—Z.
X—>—00 X X—>—00 1+i 1
X %2

However, we could use another version of L’Hospital’s Rule.




L’Hospital’s Rule for Form *

o0

Suppose that f and g are differentiable functions on an open interval
containing x = a, except possibly at x = a, and that |jm f (x) = and

f'(x)

lim 9(x) =oo. If [im—— has a finite limit, or if this limit is + o or
x—a x—a J (X

f(x f'(x . .
—o0, then |im ) _ Iimﬁ . Moreover, this statement is also true

x—a g(X) x—a g'(X)
in the case of a limitas x >a ,x > a",x — —oo, Ooras X — +wo.

Example 1: i 3x2+5x—7_|_ 6x+5_|_ 6_3
S Tkl o ax—3 T MMy T

3x-1 3 3 1 3
Example 2: i =lim —==Ilim —=—(0)=0
P xlmox2+1 X'ETL 2X ZXIEL 2()
S 3x*—4 . 9x® . 18x
Example 3: |im =lim——=lim——=»

X—>00 2X2 +1 o 4X x4

8x
[ Ay 2 [ 12
Example 4: ||mM =1lim 2VaxT+1 lim ——=== = L’Hospital’s Rule does not help in
xo-o  X+1 X—>—20 1 X—>—o0 1/4)(2 +1

this situation. We would find the limit as we did previously.

o o In(x*+D) . x241 .. 2x(x3 +l) .o 2xt+2x
Example 5: — = = = Lt et -
P XILTO IN(x* +1) x5w  3X° Jm 3x2(x? +1) UL
x®+1
8x° +2 24x° 48x 48 2

hm vex Mg 6~ Mo =7573

. Inx . Coox8 X2 02
Example 6: |im ———=1lim % =lim =lim—==—%=0

x—0" }/2 x—0" _ys x—0" — 2X x—0" — 2 -2
X X




Example 7: lim

X—>+0

arctan x :(ﬁm 1j(ﬁm arctan xj = (O)(%J =0 [This limit is not an indeterminate
x—40 X J\ x—>+0

form of the type 2, so L’Hospital’s Rule cannot be used.]
o0

I11. Indeterminate Form of the Type 0-w

Indeterminate forms of the type 0-co0 can sometimes be evaluated by rewriting the product as a

quotient, and then applying L’Hospital’s Rule for the indeterminate forms of type % or 2.
o0

B =X

. .o Inx . . .
Example 1: |im XInX=|im—— =lim =lim =lim(-x)=0
x—0" x—0" }/ x—0" _}/2 x—0" X x—0*
X X

. Inx —sinxtan x
Example 2: lim (sinx)Inx=|im —— =Iim Lzr — =

x—0* x—0* CSCX x—0* —CSCXCOtX x—0*
. =sinx .
[nm —j(nm tan x] ~ (£1)(0) =0
x—0" X x—0"

Example 3: |lim xsin(%): lim sin(%): lim % =1 [Let y= % ]

X—>+00 X—>+00 }/ y—>0*
X

V. Indeterminate Form of the Type «-«

A limit problem that leads to one of the expressions
(+00) = (+0), (=0) = (=0), (+o0)+ (=), (-0)+ (+)

is called an indeterminate form of type oo —co. Such limits are indeterminate because the two
terms exert conflicting influences on the expression; one pushes it in the positive direction and the
other pushes it in the negative direction. However, limits problems that lead to one the expressions

(+0) + (+0), (+0) = (=), (=0) + (=), (—0)—(+0)

are not indeterminate, since the two terms work together (the first two produce a limit of + o and the
last two produce a limit of —o0). Indeterminate forms of the type oo—oco can sometimes be evaluated

by combining the terms and manipulating the result to produce an indeterminate form of type % or 2.
o0

Example 1: |im (E—L) = lim =

sin X —Xx ) cosx—1
x>0 \ X SinX x—0*

- =1m =
Xsin X x—0" XCOSX +SINX




lim - =—=0
x>0" — XSINX+COSX+COSX 2

Example 2 fim [In@—cosx) - In(x?)]= lim {m(l—;osxﬂ_
in| g (1—cosxj il i (ﬂj :|n(1j
X M 2x >

V. Indeterminate Forms of the Types 0°, «°, 1%

Limits of the form [im [f (x)]°* {or lim [ ()]**

X—a

} frequently give rise to indeterminate forms

of the types 0°, «o®, 1°. These indeterminate forms can sometimes be evaluated as follows:

X—00

@) y=[f]"

(2 Iny=In[f ()]** = g(x)In[f (x)]

3) lim [Iny]=lim {9() In[f (0]}
The limit on the righthand side of the equation will usually be an indeterminate limit of the type 0-o0.
Evaluate this limit using the technique previously described. Assume that |im {g(x) In[f (x)]}: L.

(4) Finally, |lim[Iny]=L= In[lim y} =L=|imy=e".

X—a X—a

Example 1: Find |im x*.

x—0"

This is an indeterminate form of the type 0°. Let y=x* =Iny=Inx* =

Inx

] i . . X .
xInx. limIny=limxInx=[|im =lim 42— = lim(- x)=0.
x—0" x—0" x—0" % x—0" _%2 x—0"

Thus, |im x* =e°® =1.

x—0*

Example 2: Find [im (ex+1)7%.

X—>+00

This is an indeterminate form of the type «°. Let y = (e* +1)_% =

iny =i e ) % | = 2D i iy ~2E D

X X—>+0 X—>+00

_2( e J 2 2
. e + . — ex . _ ex ' ) —2X
lim———==Ilim——=lim——=-2.Thus, lim (¢ +1)/=
X—>40 1 xoto €0 +1 x40 €

X—>+00

Example 3: Find [im (cosx)%.

x—0*




This is an indeterminate form of the type 1. Let y = (Cosx)}/x _
Iny = |n[(cosx)%}:M, In(cosx) _

limIny=1lim

x—0* x—0*

lim(~tanx)=0. Thus, fim (cosx)* = e® =1.

x—0* x—>0*

Tangents
The tangent to the graph of a function f at the point (c, f(c)) is a line such that:

- itsslopeisequal to f'(c).
- it passes through the point (c, f (c)).

The equation of the tangent to the graph of a function f at the point (c, f(c)) is given by the following

formula:
y=f'(xX)(x—=c)+ f(x).

Example: Find the equation of the tangent to the graph of f(x)= x> at the point (1,1).

We have f'(x)=2x and, since c=1, we obtain

y=Ff'"Qx-)+f@) = y=2(x-1)+1 = y=2x-1.

-1

-3

Maximum and minimum

A function f(x) is said to have a local maximum at x, if there exists a>0 such that, for
Xe(X,—a,X, +a), we have f(x)< f(x,).

Intuitively, it means that around x, the graph of f will be below f(x,).

Similarly, a function f(x) is said to have a local minimum at X, if there exists a>0 such that, for
Xe(X,—a,X, +a), we have f(x)=> f(x,).




This time, the graph of f will be situated above f (x,) for values of x around x,.

Examples:

f(x)=x*+x+3.

= -2 2 4

-1

From the graph, it is rather obvious that the function has a unique minimum and that this minimum is
global (i.e. the whole graph is above this minimum).

On the other hand, if we take f(x)=x®—-4x?+3x—2, the situation is rather different:

v 16.7951
4.5301

2.265

—2.5248 2.5248 5.8495 ?.5743

—2.265

—4.5301

—6.7951

Here, we have a local maximum and a local minimum.

Minima and maxima have one thing in common: say f has a local minimum at x,. Then the tangent to
the graph of f at the point (x,, f(x,)) is a horizontal line:




-1

The slope of the tangent is therefore 0.
Remember, the slope of the tangent to the graph of f at the point (x,, f (x,)) is equal to f'(x,), so

here we end up with f'(x,)=0.
If f has a local minimum or a local maximum at x,, we therefore have f'(x,)=0.

In general, the solutions of f'(x) =0 are called stationary points. There are three different kinds of

stationary points: local minima, local maxima and turning points.

You can classify them as follows:

Say X, is a stationary point. Then if

- f"(x,) <0, there is a local maximum at x,.
- f"(x,) >0, there is a local minimum at X,.
- f"(x,) =0, there is a turning point at x,.

3 X2

Example: f(x)= %+? —6x—2. Find and classify the stationary points of f .To find the stationary

points, we solve f'(x)=0:

Here, f'(X)=x*+x-6=(x—2)(x+3),s0that f'(x)=0 < x=2 or x=-3.
Next, we calculate f''(x) and use the rule above to classify the stationary points:
f"(x)=2x+1.

f"(2)=5>0, sothat f hasa local minimum at x=2.

f"(-3)=-5<0,sothat f hasalocal maximum at x=-3.

Let’s have a look at the graph of f :




-18 -8 -4 -2

The graph indicates that there is indeed a local minimum at x=2 and a local maximum at x=-3. The
graph also indicates that they are both local and not global.

Successive Differentiation:

The derivative f' (x) of a derivable function f (x) is itself a function of x. We suppose that it also
possesses a derivative, which is denoted by " (x) and called the second derivative of f (x). The third
derivative of f (x) which is the derivative of f' (x) is denoted by f ™'(x) and so on. Thus the successive
derivatives of f (x) are represented by the symbols, f (x), f; (X), ..., f" (%), ...

where each term is the derivative of the previous one. Sometimes y1,y2,Y3,...,Yn,...are used to

denote the successive derivatives of y.

e Leibnitz’s Theorem

The nth derivative of the product of two functions: If u, v be the two functions possessing derivatives of
the nth order, then (UV)h =uUnV +"CiUp-1 Vi +"CoUn2aVo+ ... +"CrUnrVi+ ...+ UVn.
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INTEGRATION:

Integral as Limit of Sum, Fundamental Theorem of Calculus( without proof.), Indefinite Integrals,
Methods of Integration: Substitution, By Parts, Partial Fractions, Reduction Formulae for
Trigonometric Functions, Gamma and Beta Functions(definition).

INDEFINITE INTEGRATION

Definition f(x) is said to be primitive function or anti-derivative of g(x) if f'(x)=g(x).

Example di(xz) =2X x” is the primitive function of 2x.
X

Note Primitive function is not UNIQUE.

Definition  For any function f(x) if F(x) is the primitive function of f(x), i.e. F'(x)=f(x), then
we define the indefinite integral of f(x) w.r.t.x as _[ f(x)dx =F(x)+c, where ¢ is

called the constant of integration.

Theorem Two function f(x) and h(x) differ by a constant if and only if they have the same

primitive function.

Standard Results

1
1. _[—dx: Inx+c 2. jexdx=ex +C
X
3. Icosxdx=sinx+c 4, _[sinxdx=—cosx+c
5. Isecz xdx =tanx+c¢ 6. jcscz Xdx = —cotXx+cC
7. _[secxtan XdX =secx+cC 8. Icscxcotxdx =—CSCX+C
a* 1 Jx?-a?
9. _[axdx= +C 10. j—dx=lnL +c
Ina Ny a
1 X
I dx sin —+c 12*. _[ - 1 2dx=ltan‘l§+c
Va2 X“+a a a




1 Vx?+a® +x
13. I—dx:ln—+c
VX? +a’ a

Theorem  (a) j Kf (x)dx = k j f(x)dx
(b) j[f (X) £ g(x)]dx = j f(x)dx £ j g(x)dx.

X

Example Prove I a‘dx = +C
Ina
proof Let y=a".
1dy dy
Iny=xlna = ——=I|na .. —=ylna
y y dx dx y
dy
—dx = Inadx
Idx Iy
y = Inajy dx
Iaxdx = +C
Ina

METHOD OF SUBSTITUTION

Theorem (CHANGE OF VARIABLE)
If x=g(t) is a differentiable function, If(x)dx = If(g(t)) g'(t)dt.

Proof Let F(x) is the primitive function of f(x) .
i.e. aF(x) =f(x)
dx
x=g(t)
We have EF(X) = dF(x) dx
dt dx dt
dF(x) _,
= o (t
o (t)
FOO = [fam)e (bt
[fooax = [fam)e (®)at
1 VX*+a® +x
Example Prove I—dx: IN—— |+c
Vx? +a’ a
proof sub x=atan 0 = dx =asec’0 do
1 1
s | ————=dx = ———asec’0 do
IW/XZ +a?2 aseco

Isec 0do

Insec 6 +tan 6|+c
(jsecﬂ de =Insecd +tan@|+c)

Jx?+a® +x
= T "%4c

a

In

Remark By using substitution, the following two formulae can be derived easily.




Example

proof

Example

Example

Example

Example

Example

Example

Example

(1

(1

jmdx=ln|f(x)|+c,

f(x)
| f'(x)
2.JF(x)

dx = /f(x) +c.

The following examples illustrate the use of the above results.

jsece do = InjsecO +tan@|+c

(@)
(b)

_[tanedﬁ

de

jsin 0

cos 0

—ILd(cos 0)
cos 0

—In|cos@|+c

j coto de

ICOS 0
sin 0
j#d(sin 0)
sin 0
Injsin® |+c
dx
- &

J'i‘/gdx

e’ +1
@ Joi

jxﬂ/ﬁdx

jex cot(e*)dx

2X 2X
a”+b I
(S]

and

(b)

jcscede =—InjcscO +cotB|+c
Inx
I—dx
X
= j|nx d(Inx)
2
_ (Inx) re
2
j COSX
3+ 2sinx
Ixzexsdx
(Let y=+/x )
esin2x Sinz X
(b) dex




©) [—"—ax

INTEGRATION BY PARTS

*Theorem (INTEGRATION BY PARTS)
If u,v are two functions of x, then _[udv = uv—_[vdu.

d _ dv  du
proof —uv = U—+V—
dx dx  dx
dv d du
u— = —Uuv—v—
dx dx dx
We integrate both sides with respect to x to obtain
_[udv = Iud—vdx = uv—jvdu
dx
Example (a) _[Inx dx (b) _[xz Inx dx
Example (a) | = j x? cosxdx
(b) I =jx25inxdx
xe’”
Example I = dx
P I (1+x)?
Example I tan™ x dx
Example I(I nx)*dx
Example @ Show that itanéz ! .
dx 2 1l+cosx
(b) Using (a), or otherwise, findjx+smx dx
1+cosx

SPECIAL INTEGRATION

We resolve the rational function % by simple partial fraction for P(x),Q(x) being poly. The

integration of rational function is easily done by terms by terms integration.




Example €)) I < 2d_Xa2 (b) I :Z—J:Llldx

x*+2x% +1
Example _[ Sdx
(Xx=1)(x=2)(x-3)
4 3 2 _
Example Evaluate I 2X FX 3+ 3 3de.
x° =1
Solution By decomposing into partial fractions,
2x* +x° +3x% - 3x 1 2X
3 =2X+1+ +—
x° =1 Xx-1 x"+x+1
Hence,
Integration of __Px+Q
vax® +bx+c
4x-1
Example Evaluate | ————————dx.
V5—4x—x*
Solution Observing that the derivative of 5—4x—x” is — (4 + 2x), we have
4x -1 —-2(-4-2x)-9
——dx = dx
“‘\/5—4x—x2 j V5—4x—x*
Integration of !
X+ax® +bx+c
ax
Example —
Ix—\/xz -1
Integration of IR(x,n a)(er)dx
cx+d
In solving such problems, we use the substitution u = Q/ax +b
cx+d
Example | =_[X;2dx
XV X+1

INTEGRATION OF TRIGONOMETRIC FUNCTION




Integration of _[R(cosﬁ ,SinB )do

Q) If —R(—co0s0,sin0)=R(cos0,sind) , put u=sino .
@) If —R(co0s0,—sind)=R(cosb,sind) , put u=cos0 .
3 If R(—cosB,—sind)=R(cosd,sind) , put u=tan@ .
4 Otherwise, put t= tan(i. tan® = 2t 5
2 1-t
_¢2
cosO = 1 t2
1+t
sin@ = 2t 5
1+t
Example (a) _[00336 sin“0 do (b) _[cosze sin’0 do

REDUCTION FORMULA

Certain integrals involving powers of the variable or powers of functions of the variable can be related
to integrals of the same form but containing reduced powers and such relations are called
REDUCTION FORMULAS (Successive use of such formulas will often allow a given integral to be
expressed in terms of a much simpler one.

Example Let I, =_[sin“xdx for n is non-negative integer.

1 , n-1
Show that I, =—=cosxsin™™ x+—=1__,
n n

Hence, find 1.

Example Show that if 1, = jcos”e de , where n is a non-negative integer, then
i "9 n-1
|n=snecos 9+ I, ,forn>2.
n
Hence evaluate I, and I .
Example If 1, = _[tan” x dx , where n is a non-negative integer, find a reduction formula
for 1.
1
| =——tan""x—1
( n n—l n-2 )

This formula relates 1, with 1__,, and if n is a positive integer, successive use of it will ultimately
relate with either _[tan xdx or _[dx .Since _[tan xdx = Inlsecx| +c, jdx = X+ ¢, and positive integral

power of tanx can therefore be integrated.




Example For non-negative integer n, 1, =I(Inx)”dx.

Find a reduction formula for 1, and hence evaluate I, .

Example Let n be a positive integer and a=0.
dx
| = ce(*
" I(ax2+bx+c)” *)

2ax+b

(a) Prove that n(4ac—b?)I _ -
(ax® +bx+c)

=2(2n-1)al, +

n+l

dx
b) Evaluate | ———.
(b) Evaluate I(x2—2x+2)2

METHODS OF INTGRATION

1. Integration using formulae i.e. simple integration
2. Integration by substitution

(i) Integrand of the form f (ax+b)
FORMULAE BASED ON f (ax+b)

Z.I 1 X:Iog|ax+b|
ax+b a

3. I c®*Pdx =
alogc
eax+b

4, Iea“bdx = +C

a
~ cos(ax+b)

a
6.Icos(ax+b)dx=w
a
. tan(ax+b)+c
a
_cot(ax+b)

a
9. Isec(ax+b)tan(ax+b)dx:WH

cosec(ax+b)
a
_Iogcos|ax+b|+c or Iogsec|ax+b|+c
a a
_ Iogsin|ax+b|+c
a

5. Isin(ax+b)dx: +C
+C

7. [sec’ (ax+b) d
8. Icosecz(ax+b) dx = +C
10.J.cosec(ax+b)cot(ax+b)dx:— +C
11._[tan(ax+b)dx:

12. _[cot(ax+b)dx

lo
g 2

(o)

| b)+t b
og|sec(ax+ ;+ an (ax + )‘+c o .

+C

13. jsec(ax+ b)dx =




log|tan (ax2+b)

+cor +C
a a

| b)—cot b
14.jcosec(ax+b)dx= og‘cosec(ax+ ) - ot (ax-+ )‘

B sin” (ax+b) e

15. | L dx
1/1—(ax+b)2 a

1 cos ™ (ax+b)
16. |- dx = +C
'[ 1/1—(ax+b)2 a
-1
17.} 1 20Ithan (ax+b)+C
1+(ax+b) a
-1
18, .[_ 1 20IX=cot (ax+b)JrC
1+(ax+b) a
-1
19.I ! = dx=Sec (ax+b)+c
(ax+b)4/(ax+b) -1 a
-1
20, J~_ 1 : dchosec (ax+b)+C
(ax+b)y/(ax+b) -1 4

(ii) Integration of the type I[f (x)]n.f’(x)dx J‘[:/(E:;%n dx;; j ff/((;()) dx; Ig(f (). (x)dx

METHOD: Put f(x) = t and f/(x) dx = dt and proceed.

/
NOTE: If (X)dx:log\f(x)\+c

f(x)

(iii) Integration of the type: jsinm (x).cos" (x)dx , where either ‘m’ or ‘n’ or both are odd.

METHOD:

Case(i) If power of sine i.e. m is odd and power of cosine i.e. n is even then put
cosx =t and proceed.

Case(ii) If power of sine i.e. m is even and power of cosine i.e. n is odd then put
sinx=t and proceed.

Case(iii) If power of sine i.e. m is odd and power of cosine i.e. n is also odd then put
cosx=tor sinx=t and proceed.

(iv). Integration which requires simplification by trigonometric functions:

Learn the following formulae:

Sianzl—CgSZX 2sin Acos B =sin(A+B)+sin(A-B)




1+cos2x

cos® x =

2cos Asin B =sin(A+B)—sin(A-B)

sin® x = l[3sin x—sin3x]

2c0s Acos B =cos(A+B)+cos(A—-B)

cos® x = %[3 COS X+ €0 3X]

2sin Asin B =cos(A—B)—cos(A+B)

NOTE: A student may require formulae of class XI, other then above; therefore he is suggested
to learn all trigonometric formulae studied in class XI.

(v). SOME SPECIAL INTEGRALS:

1[\/7dx sin” (XJ+C

y

1 1.
dx ==sin
\/az —(bx+c)’

_1(bx+cJ
+c
a

X -1 1 bx+c
2. dx cos™ ( )+c 2. dx=—cos‘1( ]+c
I\/ \/az— bx+c)2 b a
3] :ltan‘l( ]+c 3] :itanl(bx+cj+c.
a“+x a a bx+c ab a

5.

4, J'_—lzdx=icot‘1(bx+cj+c
a’ +(bx+c) ab a

j 1 dx = isec
2 ab

(bx+ c)\/(bx 0

7.[\/217dx Iog‘x+ x* —a’
X -a : dx:llog (bx+c)+ (bx+c)2—a2 +C
(bx+c)2—a2 b
8. I L dx:log‘x+ x*+a’*|+c. |8. j;dlelog‘(bxwﬁ (bx+c)2+a2 +C.
VX +a’ (bx+c)2 vt b
1 1 1 1 |(bx+c a|
9 dx =—Ilog|——|+c 9. dx = |
Ix2—a2 2a |x+a I(bx+c)2—a2 X~ 2ab ‘(bx+c +a‘
1 1 a+Xx 1 a+(bx+c)
10 dx=—log|—|+c. 10. - | .
'[az—xz 2a “la-x -[ bx+c 2ab 9 a—(bx+c) e

3. INTEGRATION PARTIAL FRACTIONS:

FACTOR IN THE

CORRESPONDING PARTIAL FRACTION




DENOMIANTOR
( Linear factor) A
ax+b ax+b
Repeated linear factor
(i) (ax-+b)’ A B
n ax+
(ii) (ax+D) N (aX;zb) A N
+ >+ s+t -
ax+b (ax+b)” (ax+b) (ax+b)
Quadratic factor
ax? +bx+c AX+B
ax’ +bx+c
Repeated quadratic factor
(i) (ax’ +bx+c)2
y n . AX+B AX+B,
g i +
(ii) (ax® +bx+c) (i) o 1 bx 1 C (ax2+bx+c)2
(ii)
AX+B AX+B, AX+B, AX+B,
2CADXAC | (a2 2t R "
(ax® +bx+c)  (ax® +bx+c) (ax® +bx+c)

NOTE: Where A,B and Ai’s and Bi’s are real numbers and are to be calculated by an
appropriate method

NOTE: If in an integration of the type % (i.e.) a rational expression deg(p(x))=deg(q(x))
q(x

then we first divide p(x) by q(x) and write % as
q(x

M = quotient +M and then proceed.

q(x) divisor

4. INTEGRATION BY PARTS:

Integration by parts is used in integrating functions of the type f (x).g(x) as follows.

I( I functionx I1™ function ) dx = I* functionj( 1™ function dx—j[%( | function)xj( 11" function)dxj dx

Where the It and 11" functions are decided in the order of ILATE;

I: Inverse trigonometric function
L: Logarithmic function

T: Trigonometric functions

A: Algebraic functions

E: Exponential Functions




There are three type of questions based on integration by parts:

TYPEL. Directly based on the formulae
Example: _[xsin xdx ; _[Iogxdx : I(sin'lx)z dx etc.

TYPE2: Integration of the type: I e™ sinbxdx ; J'eaX cos bxdx
TYPE3 Integ ration of the type:

_[e ))dx e*f (x)+c
.fe '(x))dx=e"f (x)+c

5. SOME MORE SPECIAL INTEGRALS

’ 2 2 2
1 Ix/mdx:—x x2—a +a—sin‘1(§j+c

2

+C

’ 2 2 2

2. J\/xz+a2dx=%+%log‘x+\/x2+a2
’ 2 2 2

3. J\/xz—azdx=%—%log‘x+\/xz—a2

NOTE: SOME MORE SPECIAL INTEGRALS OF THE TYPE f(ax+b)

b bx+c)’—a? a2
1. J'./az—(bx+c)2dx: % (bx+c) (2X+C) 2 +%sin—l(bxf:c) +c

+C

b bx+c)’+a g2
(bxc+) (2X+C) i +a?|og (bx+c)+\/(bx+c)2+a2 +C

1
2. [(bx+c)’ +atdx=>
I(x+c) +a’dx A

b bx+c)’ —a? g2
(bx+c) (2X+C) - —a?log(bx+c)+ (bx+c)’ —a®|+c

1
3. [(J(bx+c) —a’dx==
j(x+c) a‘dx .

x> +1 dX'j 1

6. INTEGRATION OF THE TYPE: Im ]
X"+ kx® + X" +kx® +

METHOD:
. 1 .
STEP1: Divide the Nr. and Dr. by x2. We get 1+ — in the Nr.
X

2
STEP2: Introduce (xilj in the Dr.
X

1 .
STEPS3: Put xi; =t, as per the situation and proceed.

TYPES OF INTEGRATION OTHER THAN GIVEN IN THE N.C.E.R.T.




1 1 1
1. Integration of the t dx, dx , | — dx
EOTation o7 e bype -[a+bsin2x J‘a+bcoszx Ia5|n2x+bcoszx
1
I dx
(

. 2
asin x+bcosx)

METHOD:
Stepl. Divide Nr. and Dr. by sin® x (or cos’ x)
Step2. In the Dr. replace cosec’x by 1+cot® x (or sec’x byl+tan® x) and proceed.

2.Integrati0nofthetype_|- 1_ dx,j L dx,J' - 1 dxj - 1 dx
a+bhsinx a+bcosx asin x+bcos x asinx+bcosx+c

METHOD:
_ 2tan% 1-tan® X,
Stepl. Replace sin x =——~%—dx and cos x =——~=<dx
1+tan® X5 1+ tan? X5

Step2. In the Nr. Replacel+tan® % = sec’ % .
Step3. Put tan % =t and proceed.

3. Integration of the type.

TYPE-1. ,[ as.ln X+bcos de
csin x+d cos x

METHOD:

Put asin x+bcosx:adi(csin x+d cosx)+ B(csinx+d cosx)
X

Where o and g are to be calculated by an appropriate method.

TYPE:Z.J asin x+bcosx+cdx

dsinx+ecosx+ f

METHOD:

Put asinx+bcosx+c:adi(dsin x+ecosx+ f )+ g(dsinx+ecosx+ f)+y
X

Where o and g are to be calculated by an appropriate method.

4. Integration of the typej'z(—\/)%dx, where P and Q are either linear polynomial and quadratic

polynomial alternately or simultaneously.

CASE(i) If P & Q both are linear then put Q =t”and proceed.
CASE(ii) If P is quadratic & Q is linear then putQ =t* and proceed.

CASE(iii) If P is linear and Q is quadratic function of x, we put P = .

CASE(iv) If P and Q both are pure quadratic of the form ax® +b then put x :% .




Trigonometric Integrals

I. Integrating Powers of the Sine and Cosine Functions

A. Useful trigonometric identities

. Ccos* x=

1. sin®>x+cos’* x=1

. SiN2X = 2sinXcosx

. C0S2X =Cc0S®> X —sin®* x =2c0s?* x—1=1—2sin? x

2, 1-cos2x
2
1+ cos2x

. Sin“x=

. sinxcosy = %[sin(x— y) +sin(x + y)]
. sinxsiny = %[cos(x— y) —cos(X+ y)]

. COSXCOSY = l[cos(x —y)+cos(x+y)]
2

B. Reduction formulas
" 1. 8 n=1pf . ..
sin"x dx = —=sin"? xcosx+—— | sin"?x dx
J n n
¥ 1 . n-1 N
cos"x dx = =cos"* xsinx+—— | cos"?x dx
J n n
C. Examples

1. Find J.sinz X dx.

Method 1(Integration by parts): Isinz X dx = J.sinx (sinx dx). Let

u=sinx and dv=sinx dx= du=cosx dx and V=Isinxdx=

1

—cos x. Thus, J-sinz X dx = (sinx)(—cosx) +J.cos2 X dx = —sinXcosX +

I(l—sinz X) dx=—sinxcosx+j1dx—jsin2x dx =—sinXCoSX + X —




jsinz X dx = 2"‘sin2 X dXx = —SINXCOSX + X = Isinz X dx =

1 . 1
—=sinxcosx+—x+C.
2 2
N 1 1 1.
Method 2(Trig identity): Jsm X dXZEJ-(l—COSZX) dx:Ex—Zsm2x+C.

Method 3(Reduction formula): J-sinz X dx = —%sin XCOSX + %J.ldx =

1. 1
—=sinXcosx+—=x+C.
2 2
2. Find jcossx dx.
- . 3 l 2 - 2
Use the reduction formula: | cos®x dx:gcos xsmx+§ cosxdx =

Lcos? xsinx+zsinx+C ~Lsin X(1—sin® x) +gsinx+C =
3 3 3 3

] 1.
sinx—=sin®x+C.

3. Find-“sin3xcos2 X dx.

sin®xcos® x dx = J‘sinz xsinxcos’® x dx = J.(l—cosz X) cos® xsin xdx =

(cos® x—cos*x)(sinx dx). Let u=cosx = du=-sinxdx. Thus,

1

(cos® x —cos*x)(sinx dx) :—J‘(u2 —u*) du :—%u3 +%u5 +C=

—lcos3 x+lcos5 X+C.
3 5

4. Find J-sinzxcosz X dx.

jsinzxcosz « dX:j'(l—c;)st](1+c§SZXj dx:%f(l—COSZZX)dXZ

ljsin22xdx=1j 1-cosdx dx=ljldx—ljcos4x dx =
4 4 2 8 8

%x—isin4x+c.

5. Find Isin4xcossx dx.




Method 1(Integration by parts): Let u=sin4x and dv=cos3x dx= du =

4cosdx dx and v = %sian. Thus,jsin4xcosSx dx =
. 1 . 4 . 1. .
(5|n4x)(§ sm3xj—§J.cos4xsm3x dx = gsm 4xsin3x —
ﬂJ‘cos4xsin3x dx. Find Icos4xsin3x dx. Let u=cos4x and dv =
3
sin3x dx = du = -4sin4x dx and v = —%cosfﬂx. Thus,
. 1 4 ( . .
cos4xsin3x dx = —gcos4xcos3x—§ sindxcos3x dx. Returning to
. . 1. .
the original integral, J.sm4xc053x dx = gsm 4xsin3x —
i —Ecos4xcos3x—ﬂj.sin4xcos3x dx :lsin4xsin3x+
3! 3 3 3
4 16 [ . 71 .
§cos4x0033x+5 sin4xcos3x dx = —§ sin4xcos3x dx =
1. ) 4 ]
§S|n4xsm3x+§cos4xc053x = | sin4xcos3x dx =

—gsin4xsin3x—;cos4xcos3x+C ;

Method 2(Trig identity): Isin4x cos3x dx = %J'(sin X +sin7x) dx =

—lcosx—icos7x+c ;
2 14

Il. Integrating Powers of the Tangent and Secant Functions
A. Useful trigonometric identity: tan®x+1=sec® x

B. Useful integrals

1. secxtan x dx=secx+C

2. | sec’xdx=tanx+C

3. | tanx dx=In|secx|+C =—In[cosx|+C

4. |secxdx= In| secx + tan x|+C

C. Reduction formulas




sec"? xtanx n-2 _
1. |sec"xdx= + sec"?xdx
n-1 n-1

o n-1

2. | tan"xdx = tan 1X —jtan”zxdx

D. Examples

1. Find jtanz xadx.
J.tanz xdx:J.(sec2 x—1)dx:J.sec2 xdx—J-ldx: tanx—x+C.

2. Find J.tan?’xdx.

2

Itan3xdx: tan2 X —Itan xdx:%tan2 x—|n|secX|+C.

3. Find J.sec3xdx.

secxtanx 1 1 1
Isec3xdx=T+—I5ecxdx=§secxtmx+iln| secx+tanx|+C.

4. Find jtan xsec?xdx.

Let u = tan x = du = sec® xdx = ftan XseCZXdX:IUdu:%UZ +C=

1tan2x+C.
2

5. Find jtan xsec*xdx.

tan xsec*xdx = | tan xsec® xsec’xdx = J.tan X(1+tan® x)sec® xdx =

tan xsec?xdx + | tan® xsec?dx. Let u =tanx = du=sec? xdx. Thus,

tan xsec*xdx = udu+ju3du :%uz +%u4 +C :%tan2 x+%tan4 X+C.




6. Find Itan xsecxdx.

jtan xsec’xdx = Isecz X (secxtan xdx). Let u=secx = du=secxtan xdx.

Thus, Itan xsec3xdx = J.uzdu :%UE’ +C :%sec3 x+C.
7. Find J-tanzxsece’ xdx.

Itanzxsec3 xdx = j(seczx —1)sec® xdx = Isec5 xdx—J‘sec3 xdx. Using

the reduction formula, IsecSde = 1sec3 tan x + %Ise@x dx. Thus,

5
1
J.tanzxsec3 xdx = J-sec5 xdx—J‘sec3 xdx = Zsec3 Xtan x+%“-sec3 xdx —

IsecSde: %sec3 X tan x—%jsec3xdx: %sec3 X tan x—%secxtan X —

%In|secx+tanx|+C.

8. Find J‘\/tan x sec* x dx.

J‘\/tan x sec’ x dx = J.\/tan x sec” xsec’ xdx = J‘\/tan X (1+tan® x) sec® xdx.
Let u =tan x = du = sec® xdx = J.\/tan X sec* x dx:J.'\/tanxsec2 X dx +
I\/tanxtanz xsec? x dx:Iu%du+Iu%du :gu% +%u% +C=

%(tan x)% +%(tan x)% +C.

9. Find J-\/secx tan xdx.

Let u =+/secx = u? =secx = 2udu = secx tan xdx = u’ tan xdx =
2 2
tan xdx = udu =—du. Thus, I\/secxtan xdx:'[u(gdu) = 2I1du =
u u

u2

2u+C =2+secx+C.

Practice Sheet forTrigonometric Integrals




(1) Prove the reduction formula:

(2) Prove the reduction formula:

(3) Prove the reduction formula:

(4) Prove the reduction formula:

7y
(5) j tan3(3x) dx =

0
7y

(6) J‘cosz (2x) dx =
0

7
(7) jsin(Sx)cos(3x) dx =
0

(8) Itan3 xsecS x dx =

9) J'\/sin X Cos° X dx =

(10) jcosS xsin?x dx =

sin? xcos? xdx =

) 1. .
sin"xdx = —=sin"* xcosx +

n-1( . .
— | sin"? xdx
n n

1 4. n-1 _
cos"xdx ==cos"* xsinx+—— | cos"? xdx
n

n
sec"’ xtanx n-2 _
sec"xdx = sec"? xdx
n-1 n-1
tan"* x B
tan"x dx = T tan"? xdx
n —_




(13) Itan5 xsecxdx =

Solution Key for Trigonometric Integrals

(1) f sin"xdx = I sin"*xsinxdx. Use integration by parts with u =sin"™* x and

dv =sinxdx=> du = (n-1)sin"? xcosxdx and V:Isinxdx:—cosx:

I sin"xdx = I sin"*xsinxdx = —sin™* xcosx + (n —1)J- sin"?xcos® xdx =

—sin"* xcosx +(n —1)J.sin”2x(1—sin2 x)dx = —sin"" xcosx +

(n-1)

(n-1)

sin"?xdx—(n —1)Isin”xdx:> njsin" xdx = —sin"'xcosx +

. ] NGy n-1( . ._
sin"? xdx= | sin"xdx =—=sin"* xcosx+—— | sin"?x dx.
n n

(2) I cos"xdx = I cos"'xcosxdx. Use integration by parts with u = cos"™* x and

8

dv=cosxdx = du = (n—-1)cos"* x(-sinx)dx and V:Icosxdx:sinx:

I cos"xdx = I cos"*xcosxdx = cos" " xsinx+(n —1)'.- cos"*xsin® xdx =

cos"* xsinx+(n —1)J‘ cos”’zx(l— cos’ x)dx =cos"* xsinx +

(n-1)

(n-1)

cos"*xdx—(n —l)jcos"xdx = njcos" xdx = cos" ' xsinx +

_ 1 . n-1 _
cos"? xdx:>J-cos”de=—cos” xsinx+—— | cos"?xdx.
n n

(3) I sec"xdx = Isec“ xsec’xdx. Use integration by parts with u = sec"? x and




dv =sec® xdx = du = (n—2)sec"* x(secxtan xdx) and v = J-seczxdx =tanx=

I sec"xdx = Isec”z xsec’xdx = sec”? xtan x —(n— Z)J‘sec“xtan2 xdx =

sec"? xtanx —(n— Z)J‘sec“x(sec2 x—1 )dx = sec™2 xtan x— (n - Z)Jsec"xdx+

(n— Z)Isec”‘zxdx =(n —1)J.sec”x dx =sec”* xtan X+ (n— Z)Jic,ec"‘2 xdx =

sec"? xtanx n-2 _
Isec“xdx: . + ; sec"? xdx.
n— n—

(4) ftan”xdx:'[tan”zxtan2 xdx:“‘tan“x(sec2 x—l)dx:J‘tan“xsec2 xdx —

n-1

Jtan”zxdx: tan" " x —J‘tan"‘zxdx.

n-1

(5) Letu =3x:>du:3dx:>jtans(Bx)dx:%'[tan3(3x) 3dx:%J-tan3udu. Use

2
reduction formula #4 above to get %J‘tan% du= %(tanz uj—%jtan udu=

7 ,f

7

1tanzu—lln| secu | = tan3(3x) dx = {ltanz(SX)—Eln| sec@x)|r =
6 3 6 3
0

0
1. ,(3z) 1 3z
~tan‘| — |- =In|sed —
6 4 3 4

Loz +tin=1-1in(v2)
6 '3 6 3

L an2(0)-L Loy Lyl vz
}—{Etan (O)—§In|sec(0)|}—6( 1) 3In‘ \/E‘

(6) Use the trigonometric identity cos* A = % to get J‘cosz (2x)dx =




74

4
I—1+CZS(4X) dx:%Ildx+%jcos(4x)dx:%x+%sin(4x): cos?(2x) dx =

{%(gj+%gnﬂ}—{%m)+%gnw):%}.

0

(7) Use the trigonometric identity sinxcosy = %[sin(x —y)+sin(x +y)] to get

(8)

(9)

(10) Icoss xsin®x dx =

. 1(. 1( . 1 1
Ism(Sx) cos@3x)dx = 5f3|n(2x) dx + EISln(8x) dx = —Zcos(2x) — 1—6cos(8x) =

s
) 1 T 1 1 1
sin(5x)cos(3x)dx=<{—=coy — |——co —<—=—c0S0——co0s0; =
(5x) cosEx) { 4 4) 1 iﬂ% { 4 16 }

10

tan® xsec® x dx = J-tanzxsecz X (secxtan xdx) =

(sec® x —1)sec® x (secx tan x dx) = J-sec“ x (secx tan x dx) —

1 i
sec’x (secxtan xdx) = gsec5 X gsec3 Xx+C.

Jsinx cos® x dx = J.\/sinx (0032 x)(cosxdx) = j(sin x)%(l—sin2 x)cosxdx=

(sinx)}/2 cosxdx— (sinx)% cosxdx = %(sinx)% —%(Sinx)% +C.

cos’xsin” x(cosxdx)= j(l—sinz xJsin? x)cosx dx =

Isinzx(cosxdx) —J-sin“x(cosxdx) = %sin3 x—%sin5 x+C.

(11) J. sin” X dx:J-(cosx)_}/2 sin? x(sinxdx:J-(cosx)_%(l—cos2 x)sinxdx:

v COSX




-.A(cosx)_}/2 (sinxdx) —J(cosx)% (sinxdx) = —2(cosx)}/2 +§(cosx)% =

.3 %
SINTX dx = J—2cod Z |+ 2| cod = - —20050+3(coso)% _8
COSX 2) 5 2 5 5
0
(12) Use the trigonometric identities cos* A _1+cos2A and sin® A :M.
sin? xcos? xdx = J‘(l—costj[lJr COSZXjdx = 1J‘(l—cos2 2x)dx =
2 2 4
11
1 1dx—lj‘cos2 2X dx:lx—lj- v COSEA dx:lx—lj.ldx—
4] 4 4 4 2 4 8

l cos4xdx:£x—lx—isin4x+c=£x—isin4x+c.
8 4 8 32 8

(13) Itans xsecxdx = Itan“xtan xsecxdx = I(tanz x)2 tan xsecxdx =

(sec? x—1) secxtan xdx = I(sec“ X —25ec? X+1)secxtan x dx =

sec*x(secxtan x dx)— 2-.-sec2 x(secx tan x dx)+ jsecxtan X dx =

1 2
gsec5 x—gsece’ X+secx+C.
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VECTOR ALGEBRA:

Definition of a vector in 2 and 3 Dimensions; Double and Triple Scalar and Vector Product and
physical interpretation of area and volume.

Vectors and Scalars

A vector is a quantity that has size (magnitude) and direction. Examples of vectors are velocity,
acceleration, force, displacement and moment. A force 10N upwards is a vector.

So what are scalars?

A scalar is a quantity that has size but no direction. Examples of scalars are mass, length, time, volume,
speed and temperature.

How do we write down vectors and scalars and how can we distinguish between them?

A vector from O to A is denoted by OA or written in bold typeface a and can be represented
geometrically as: A

Fig 1

A scalar is denoted by a, not in bold, so that we can distinguish between vectors and scalars.
Two vectors are equivalent if they have the same direction and magnitude. For example the vectors d
and e in Fig 2 are equivalent.

A

Fig 2

The vectors d and e have the same direction and magnitude but only differ in position. Also note that
the direction of the arrow gives the direction of the vector, that is CD is different from DC .




The magnitude or length of the vector AB is denoted by ‘ﬁ‘ .

There are many examples of vectors in the real world:
(a) A displacement of 20m to the horizontal right of an object from O to A:

20m
O > A

Fig 3

(b) A force on an object acting vertically downwards:

Object

NOZ

Fig 4
(c) The velocity and acceleration of a particle thrown vertically upwards:

Velocity

Acceleration

Fig5

A2 Vector Addition and Scalar Multiplication

) a—\"o

VYo

Fig 6

The result of adding two vectors such as @ and b in Fig 6 is the diagonal of the parallelogram, a+b),
as shown in Fig 6.
The multiplication ka of a real number k with a vector a is the product of the size of a with the number

k. For example 2a is the vector in the same direction as vector a but the magnitude is twice as long.

/

2@

Fig 7




What does the vector %a look like?

%a
/v/
Fig 8

Same direction as vector a but half the magnitude.
What effect does a negative k have on a vector such as ka ?

If k =-2 then —2a is the vector a but in the opposite direction and the magnitude is multiplied by 2,
that is:

s ¢

Fig 9

A vector —a is the vector a but in the opposite direction. We can define this as
-a=(-1)a

We call the product ka scalar multiplication.

We can also subtract vectors as the next diagram shows:

a-b

Fig 10

The vector subtraction of two vectors a and b is defined by
a—b=a+(-b)

A3 Vectors in [ 2
What is meant by [ *?

[ is the plane representing the Cartesian coordinate system named after the French mathematician
(philosopher) Rene Descartes.




Rene Descartes was a French philosopher born in 1596. He
attended a Jesuit college and because of his poor health he
was allowed to remain in bed until 11 o'clock in the morning, a
habit he continued until his death in 1650.

Descartes studied law at the University of Poitiers which is
located south west of Paris. After graduating in 1618 he went
to Holland to study mathematics.

Over the next decade he travelled through Europe eventually

. N . Fig 11 Rene Descartes 1596 to 1650
Descartes main contribution to mathematics was

his analytic geometry which included our present x-y plane and the three dimensional space.

In 1649 Descartes moved to Sweden to teach Queen Christina. However she wanted to learn her
mathematics early in the morning (5am) which did not suit Descartes because he had a habit of getting
up at 11am. Combined with these 5am starts and the harsh Swedish winter Descartes died of
pneumonia in 1650.

The points in the plane are ordered pairs with reference to the origin which is denoted by O. For
example the following are all vectors in the plane 7 *:

Fig 12

-6\ (7 2 -1
These are examples of vectors with two entries,[ 3), (SJ [3} and ( 5 j

The set of all vectors with two entries is denoted by [ * and pronounced “r two”. The [J represents that
the entries are real numbers.

We add and subtract vectors in [J > as stated above, that is we apply the parallelogram law on the
vectors. For example:



javascript:enlarge('Descartes_2.jpeg')

Fig 13
What does the term ordered pair mean?
The order of the entries matters, that is the coordinate (a, b) is different from (b, a) provided a=b.

. . a
Normally the coordinate (a, b) is written as a column vector [b] :

Example 1

3 -2 i .
Let u =[ J and v =( 3 j Plot u+v and write down u+vVv as a column vector. What do you notice

about your result?
Solution

Fig 14
By examining Fig 14 we have that the coordinates of u+v are (1, 2) and this is written as a column

B
vector .
2

If we add x and y coordinates separately then we obtain the resultant vector.

3 -2 3-2 1
That is if we evaluate u+v = + = = which means that we can add the
-1 3 -1+3 2

corresponding entries of the vector to find u+v.




In general if u= (Zj and v = (;j then

Example 2

3
Let v=(1j. Plot the vectors %v, 2v, 3v and —Vv on the same axes.

Solution. Plotting each of these vectors on [J ? we have

3T P4
) 3
2y
) @v /,/
v
A 1
-v
Fig 15

Note that by reading off the coordinates of each vector we have:

1 1(3 15 3 6 3 9 3 -3

—v==| |= , 2V =[Sl i BUSISISN= and —-v=—-| |=

2 2\1 0.5 1 2 1 3 1 -1
Remember the product kv is called scalar multiplication. The term scalar comes from the Latin word

scala meaning ladder. Scalar multiplication changes the length of the vector or we can say it changes
the scale of the vector as you can see in Fig 15.

a
In general if v= (bj then the scalar multiplication
k
kv=k| 2|=[ @
b kb
A4 Vectors in 13
What does the notation [1° mean?

1% is the set of all ordered triples of real numbers and is also called 3-space.

We can extend the vector properties in [1 > mentioned in subsection A3 above to three dimensions [ 3
pronounced “r three”.

The x—y plane can be extended to cover three dimensions by including a third axis called the z axis.

This axes is at right angles to the other two, x and y, axes. The position of a vector in three dimensions
is given by three co-ordinates (X, Yy, z).

-




Fig 16
Shows the 3 axes x, y and z.

1
For example the following is the vector [2 in [ ® and is represented geometrically by:
5

T

\“ 20
1.8
1.0
05
0o

Vector addition and scalar multiplication is carried out as in the plane [J 2. That is if

Fig 17

a d
u=|b| and v=| e | then the vector addition
c f
a d a+d
u+v=|b|+| e|=| b+e
c f c+f
Scalar multiplication is defined by
a ka
ku=k| b |=| kb
c ke

A5 Vectorsin [1"
What does [ " represent?

: a : .
In the 17" century Rene Descartes used ordered pairs of real numbers, v = (b) , to describe vectors in

the plane and extended it to ordered triples of real numbers,
a

v =| b |, to describe vectors in 3 dimensional space. Why can 't we extend this to an
c




Vi

ordered quadruple of real numbers, v =

a
b Va

, or n- tuples of real numbers, v=| °|?
c :
d

\'

n
In the 17" century vectors were defined as geometric objects and there was no geometric interpretation
of " for n greater than 3. However in the 19" century vectors were thought of as mathematical
objects that can be added, subtracted, scalar multiplied etc so we could extend the vector definition.
An example is a system of linear equations where the number of unknowns x,, X,, X;, --- and X, is
greater than 3.

v, 1

v, | . . . .
Avector v=| ? | iscalled an n dimensional vector. An example is v =

Vv 8

Hence [1" is the set of all n dimensional vectors where I signifies that the entries of the vector are
real numbers, that is v;, Vv,, vy, --- and v, are all real numbers. The real number v, of the vector v is
called the component or more precisely the jth component of the vector v.

This T "is also called n-space or the vector space of n-tuples.

Note that the vectors are ordered n-tuples. What does this mean?
1 -2

=2|. 1 .
The vector v=| . | isdifferentfrom | . |, that is the order of the components matters.

8 8
How do we draw vectorsin [1" for n>47?
We cannot draw pictures of vectors in [ *, [1°, [ °® etc. What is the point of the n-space, [ ", for
n>47?
Well we can carry out vector arithmetic in n-space.
A6 Vector Addition and Scalar Multiplication in [1"
Geometric interpretation of vectors in [1" is not possible for n>4 therefore we define vector addition
and scalar multiplication by algebraic means.
Two vectors u and v are equal if they have the same number of components and the corresponding
components are equal. How can we write this in mathematical notation?

l'Il Vl
u V.
Letu=| /| and v=| /| andif
un Vn
(32) wu;=v,for j=1, 2, 3, .-, n then the vectors u=v.
1 1
For example the vectors | 5 | and | 7 | are not equal because the corresponding components are not
7 5
equal.

Example 3




X—3 1
Let u=| y+1|and v=| 2 |.If u=v then determine the real numbers x, y and z.
Z+X 3

Solution.

Since u =V we have
x—3=1 gives x=4

y+1=2 gives y=1
z+x=3 gives z+4=3 = z=-1
Our solutionis x=4, y=1and z=-1.

We can also define vector addition and scalar multiplication in [ ".
ul Vl

u, v, ] ]
Letu=| °| and v=| | bevectorsin [J" then

un Vn
u) (v (U +v
u v U, +V
(3.3) u+v=| 2|+ 2= 2.7
u v ==

The sum of the vectors u and v denoted by u-+v is executed by adding the corresponding components

as formulated in (3.3). Note that u+v is also a vector in [1".
Scalar multiplication kv is carried out by multiplying each component of the vector v by the real

number k:
A kv,
v, kv,
(3.4) kv=k| Z|=[
v, kv,
Again kv isavectorin []1".
Example 4
-3 9
1 2
Let u= and v= . Find
7 -4
-5 1
(@ u+v (b) 10u (c) 3u+2v  (d)u-u (e) —2u—8v

Solution.
@ By applying (3.3) we have
-3 9 -3+9 6

1 2 1+2 3
7 -4 7-4 3
5) (1) (-5+1) |4

(b) By using (3.4) we have




1
10u =10 = =
7

-5 -5x10 -50
(© By applying both (3.3) and (3.4) we have
-3 9 -3x3 9x2

1 2 1x3 2x2
u+2v=3 . +2 =

+
-4 7x3 —4x2

-5 1 -5x3 1x2
-9 18 -9+18
3 4 3+4 7
o1 || -8|7| 21-8 || 13
-15 2 -15+2 -13
(d) We have
-3 -3 -3 -3
1 1 1
u-u= - [7 +(-1) B
-5 =5 -5 -5
-3 3 -3+3 0
-1 1-1 0
[ R N bl Y
-5 5 -5+5 0
Hence u—u gives the zero vector O.
(e) We have
3) (9) (-3x(-2)) ( 9x8
1 2 1><(—2) 2x8
—2u—8v=-2 -8 = =
7 —4 7><(—2) —4x8
-5 1 {5x(2) 1x8
6 72 6-72 —66
-2 16 -2-16 -18
T 14| |-32| | -14-(-32)| | 18
10 8 10-8 2

You may like to check these results of Example 4 in MATLAB.
Note that for any vector v we have

v—-v=0
The zero vector in [ " is denoted by O and is defined as
0
(3.5) O= O [All entries are zero]
0

There are other algebraic properties of vectors which we describe in the next section.
Why is this chapter called Euclidean Space?

Euclidean space is the space of all n-tuples of real numbers which is denoted by [] ".
Hence Euclidean space is the set [] ".




Euclid was a Greek mathematician who lived around 300BC and developed distances and angles in the
plane and three dimension space. A more detailed profile of Euclid is given in the next section.

SUMMARY

Vectors have magnitude as well direction. Scalars only have magnitude. Vectors are normally denoted
by bold letters such as u, v, w etc.

Vector addition in the plane [J 2 is carried out by the parallelogram rule and scalar multiplication scales
the vector according to the multiple k.

12 is also called 2-space.

12 is the three dimensional space with x, y and z axis at right hand angles to each other. [1* is also
called 3-space.

We can extend the above space to n-space which is denoted by [1 " where n is a natural number such as
1,2,3,4.,5 ...

ul Vl
u, v, ] ]
Letu=| °| and v=| | bevectorsin [J" then
un Vﬂ
u, A U, +V,
u Y u, +Vv
(3.3) utv=l 2+ Zl=|
u, V. u, +Vv,
A kv,
v kv
(3.4) kv=| ?|=| .?
A kv,

Double and Triple Scalar and Vector Product and physical interpretation of area and volume
Fundamental Concepts

1. Scalar quantities: mass, density, area, time, potential, temperature, speed, work, etc.
Vectors are physical quantities which have the property of directions and magnitude.
e.g. Velocity \7, weight Vv, force ?, etc.

3. Properties:

(@)  The magnitude of u is denoted by |d].
(b)  AB=CD ifand only if ‘E‘ :‘C_D" ,and AB and CD has the same direction.

() AB=-BA
(d) Null vector, zero vector 0, is a vector with zero magnitude i.e. ‘5‘ =0.

The direction of a zero vector is indetermine.

—_—

(e Unit vector, U or e,, isa vector with magnitude of 1 unit. l.e. |U| =1.

u?




=

)] i=— < U =|U a
i
7.2 Addition and Subtraction of Vectors
1. Geometric meaning of addition and subtraction.

c-a-b AB +BC +CD = AD

PQ=g-p

> c-a+(b) v ang%
V=V+U,
(0)  U+(V+W)=(U+V)+w,

(© U+0=0-+u
d)  U+(-U)=(-u)+u=0

N.B. 1) U—V=U-+(-V)
(2) c=a+b=a=c-b
7.3 Scalar Multiplication

When a vector a is multiplied by a scalar m, the product ma is a vector parallel to a such that
() The magnitude of ma is |m| times that of a.

(b) When m >0, ma has the same direction as that of a,
When m< 0, ma has the opposite direction as that of a.

These properties are illustrated in Figure.

Theorem Properties of Scalar Multiplication
Let m,n be two scalars. For any two vectors a and b, we have




€)) m(na) = (mn)a
(b) (m+n)a=ma+na

(© m(a+b) =ma+mb

(d) la=a

(e) Oa=o0

)] a0=0
Theorem Section Formula A R B

Let A,B and R be three collinear points.

If ﬁ:m, then OR :—mOB+nOA.

RB n m+n o

Example Prove that the diagonals of a parallelogram bisect each other.
Solution
Properties

@ If a,b are two non-zero vectors, then a//b if and only if a =mb for some meR.
(b)  |a+b|<[a/+|b|, and [a|[b|<[a—b
Vectors in Three Dimensions

@) We define i, j,k are vectors joining the origin O to the points (1,0,0), (0,1,0), (0,0,1)
respectively.

(b) i, j and k are unit vectors. i.e.|ij =|j| =|k| =1.

(© To each point P(a,b,c) in R®, there corresponds uniquely a vector OP = p =ai+bj+ck

where is called the position vector of P .

d) |p|=va®+b®+c?

© D= ai+bj+ck
va® +b* +¢c?
) Properties ; Let p, =xi+Yy,j+zk and p, =x,i+Y,]j+2z,k. Then
(1) p,=p, ifandonlyif x, =x,,y, =Yy, and z, =z,,
(i) P+ P :(X1+X2)i+(y1+y2)j+(Zl+22)k
(i)  ap, =a(xi+y,j+z,K)=axi+ay, j+oazk
N.B. For convenience, we write p =(X,Y,2)

Example Given two points A(6,8,—10) and B(1,—-2,0).
(a) Find the position vectors of A and.B.
(b) Find the unit vector in the direction of the position vector of A.

(c) If a point P divides the line segment AB in the ration 3: 2, find the coordinates of

P.
Example Let A(0,26) and B(4,-2,-8)

@ Find the position vectors of A and B . Hence find the length of AB .




(b) If P isapointon AB suchthat AP = 2PB, find the coordinates of P .

(© Find the unit vector along OP .

Linear Combination and Linear Independence

Definition

Example

Example

Definition

Example

Example

Remark
follow:

Definition

Definition

Example

Example

Example

Consider a given set of vectors v,,V,,...,v,. A sum of the form
Vv, +aV, +---+a,V,
where a,,a,,...,a, are scalars, is called a linear combination of v,,v,,...,v,.

If a vector v can be expressed as v=a,v, +a,Vv, +---+a,V,
Then v is a linear combination of v,,v,,...,v,..

r =u—2v+w is alinear combination of the vectors u,v,w .

Consider u = (1,2,-1),v = (6,4,2) € R®, show that w = (9,27) is a linear combination of
u and v while w, =(4,-18) is not.
If v,,v,,...,v, arevectors in R" and if every vector in R" can be expressed as the

linear combination of v,,v,,...,v,. Then we say that these vectors span (generate) R"

or {v,,V,,...,v, | is the set of the basis vector.

{i, j} is the set of basis vectors in R?.
{(l0,0),(O,LO),(0,0,l)} is the set basis vector in R®.

:The basis vectors have an important property of linear independent which is defined as

The set of vector {v,,v,,...,v, } is said to be linear independent if and only if the
vectors equation kv, +k,v, +---+k, v, =0 has only solution k;, =k, =---=k, =0

The set of vector {v,,v,,...,v, } is said to be linear dependent if and only if the vectors
equation k,v, +k,v, +---+Kk,v, =0 has non-trivial solution.
(i.e. there exists some k; such that k; = 0)

Determine whether v, = (1,-2,3),v, =(5,6,-1),v, =(3,2,1) are linear independent or

dependent.

Leta=i+ j+k,b=2i—j—k and c = j—k.Prove that

€)) a,b and c are linearly independent.

(b) any vector v in R*® can be expressed as a linear combination of a,b and c.

If vectors a, b and ¢ are linearly independent, show that a+b, b+cand c+a are also

linearly independent.

Example

Let a=(23-t1),b=(1-t23)and c=(04.2—t).




(@) Show that b and c are linearly independent for all real values of t.
(b) Show that there is only one real number t sothat a, b and c are linearly dependent.
For this value of t, express a as a linear combination of b and c.
Theorem

1) A set of vectors including the zero vector must be linearly dependent.
(2 If the vector v can be expressed as a linear combination of v,,v,,...v, , then the set of vectors

V;,V,,...v, and v are linearly dependent.
(3) If the vectors v,,v,,...v, are linearly dependent, then one of the vectors can expressed as a linear

combination of the other vectors.

Example Leta=i+3j+5k, b=iand c=3j+5k.
Prove that a,b and c are linearly dependent.

Theorem Two non-zero vectors are linearly dependent if and only if they are parallel.
Theorem Three non-zero vectors are linearly dependent if and only if they are coplanar.
Products of Two Vectors

A.  Scalar Product

Definition ~ The scalar product or dot product or inner product of two vectors a and b, denoted by

a-b, is defined as a-b=|a|b|cosé (0<6<7x)

where & is the angle between a and b .

Remarks By definition of dot product, we can find € by cosé = %.
Example If |a| =3,|b| = 4 and angle between a and b is 60°, then

a-b=g

Theorem  Properties of Scalar Product
Let a,b,c be three vectors and m be a scalar. Then we have

(1) a-a=|a|2

2 a-b=b-a

3) a-(b+c)=a-b+a-c

4) m(a-b) =(ma)-b =a-(mb)

(5) a-a>0ifaz=0and a-a=0if a=0

Theorem If p=aji+b j+ck and g=a,i+b,j+c,k. Then
1) P-d=aa, +b1b2 +6,C,
P-9

2) cosf = —
[Pl

(p.q=0)




a,a, +bb, +c,c,
\/alz +bl2 +cl2 \/azz +b22 +c22
3) p-q=0ifandonlyif p Lq.
4) a,a, +bb, +cc, =0 ifandonlyif p L q.

Example Find the angle between the two vectors a =2i+2j—k and b =2i—2k.

Remarks Two non-zero vectors are said to be orthogonal if their scalar product is zero.

Obviously, two perpendicular vectors must be orthogonal since 6 = % , 0sd =0, and

so their scalar product is zero. For example, as i, j and k are mutually perpendicular,
we have i-j=j-k=k-i=0.

Also, as i, j and k are unit vectors, i-i=j-j=k-k=1.

Example State whether the two vectors i —3j+4k and —i+ j+k are orthogonal.

Example Given two points A=(2s,-s+1,s+3) and B =(t—23t—-1,t) and two vectors
n=2i+2j-kand r,=—i+ j+2k
If AB is perpendicular to both r, and r,, find the values of s and t.

Example Let a,b and ¢ be three coplanar vectors. If a and b are orthogonal, show that
SR
a-a b-b
Example Determine whether the following sets of vectors are orthogonal or not.

@ a=4i—2j and b=2i+3j
(b) a=5i—-2j+4k and b=i+2j-k
(c) a=3i+j—4k and b=2i+2j+2k

Vector Product

Definition  If u=(u,,u,,u;) and v=(v,,v,,Vv,) are vectors in R*, then the vector product and

cross product u xV is the vector defined by

uxv = (UzV3 —UgV,, UgVy —UpVg, UV, —UpVs)
] k
= u, u, u,
v, OV, V,

Example Find axb, a-(axb) and b-(axb) ifa=3i+2j—-k and b=i+4j+k.




Example Leta=-i+k,b=2i+j—k and c=i+2j—2k. Find

€)) a-b (b) b-c (©) axb
d)  axc
(e) (a-b)c (f) a-(bxc)
) axb+bxc+cxa (h) (axb)-c—(cxb)-a
Q) [(@+b)xc]-a () [(@+b)x(c+a)]-b
(K) ax(bxc) () (axb)xc
Theorem If u and v are vectors, then
@ u-(uxv)=0
(b) v-(uxv)=0
) |u ><v|2 =|u|2|v|2—(u-v)2
Proof
Remarks (i) By (c) |u ><v|2 = |u|2|v|2 —(u-v)?
= |u|2|v|2 —|u|2|v|2 cos’ 4, where
@ is angle between u and v.
= |u|2|v|2(1—cos2 ) = |u|2|v|2 sin?@
uxy| = lulv{sine

The another definition of uxVv is|uxv =|ulv|sing e, |where e, is a unit vector perpendicular to the

plane containing u and v.

(i)  uxv=-vxuand Juxv|=|vxu|

(i) ixj= jxk = Kx j=

Definition ~ The vector product (cross product) of two vectors a and b, denoted by axb, isa
vector such that (1) its magnitude is equal to [a|b|sing, where 6 is angle between a and b.
2 perpendicular to both a and b and a,b,axb form a right-hand system.

If a unit vector in the direction of axb is denoted by e, , then we have
axb=|ab[singe, (0<0<n)

Geometrical Interpretation of Vector Product

1) axb is a vector perpendicular to the plane containing a and b .
(2) The magnitude of the vector product of a and b is equal to the area of parallelogram with a and

b as its adjacent sides.




Corollary

ZEro.

Theorem

Example

@ Two non-zero vectors are parallel if and only if their vector product is zero.
(b) Two non-zero vectors are linearly dependent if and only if their vector product is

Properties of Vector Product
1) ax(b+c)=axb+axc
2 m(axb) = (ma)xb = ax(mb)

Find a vector perpendicular to the plane containing the points A(1,2,3), B(-1,4,8) and

C(51-2).

Example

Example

vertices.

Example

Example

Example

Example

If a+b+c=0, showthat axb=bxc=cxa

Find the area of the triangle formed by taking A(0,-2,1), B(1,-1,—2) andC(-1,1,0) as

Let OA=i+2j+k, OB=3i+ j+2k and OC =5i+ j +3K.

(3  Find ABxAC.
(b) Find the area of AABC.

Hence, or otherwise, find the distance from C to AB.

Let a and b be two vectors in R® such that a-a=b-b=1and a-b=0
Let S={ma+ M eR®:a,feR].
@ Show that forall ue S, u=(u-a)a+ (u-b)b

(b)  Forany veR?, let w=(v-a)a+(v-b)b. Showthatforall ueS,(v-w)-u=0.

Let a,b,c e R®.
If ax(bxc)=(axb)xc=0,provethat a-b=b-c=c-a=0.

Let u, v and w be linearly independent vectors in R*. Show that :
ul Vl Wl

(@) If u=(u;,u,,u,), v=_(v,,v,,v;) and w=(w,,w,,w,) then ju, v, w, =0
u3 V3 W3

(b) IfseR®suchthat s-u=s-v=s-w=0,then s=0.

(© If ux(vxw)=(Uuxv)xw=0,thenu-v=v-w=w-u=0.

(d) If u-v=v-w=w-u=0,

ru r-v _r-w
then r = u+ v+ w forall r eR®.
u-u  V-v  W-W




Scalar Triple Product

Definition  The scalar triple product of 3 vectors a,b and c is defined to be (axb)-c.

Let the angle between a and b be @ and that between axb and ¢ be ¢.As shown in Figure, when

0<¢<%,Wehave

o/ /® /

hlL®
en|//s
a
Volume of Parallelepiped = Base Areax Height

Geometrical Interpretation of Scalar Triple Product

The absolute value of the scalar triple product (axb)-c is equal to the volume of the parallelepiped
with

a,b and c as its adjacent sides.

Let a, b and ¢ be three vectors. Then
(axb)-c=(bxc)-a=(cxa)-b

1 a2 a3
Remarks Volume of Parallelepiped = b, b, b,

Cl CZ C3
Example Let A(3,-5,6), B(2,3-2), C(-18,-8)

@ Find the volume of parallelepiped with sides ﬁ,@ and OC .
(b) What is the geometrical relationship about point O, A, B,C in (a).

Example A,B,C are the points (1,1,0), (2,-11), (-1,—-1,1) respectively and O is the origin.

Let a:a&,bzo_é and ¢ =0C .
@ Show that a,b and c are linearly independent.
(b) Find
Q) the area of AOAB, and
(i) the volume of tetrahedron OABC.
Solution

Matrix Transformation*

Linear transformation of a plane (reflections, rotation)




Consider the case with the point P(x,y) — P'(x',y') suchthat x =x",y = y'
e oAl
y' 0 -1\y

1 0
r = Ar, where A:(O j

A is a matrix of transformation of reflection.
In general, any column vector pre-multiplied by a 2x 2 matrix, it is transformed or mapped (x',y')

into another column vector.

o) GHE o)
Example A= , =
c d y' c d\y
We have x'=ax+ by
y'=cx +dy
If using the base vector in R?, i.e (1,0),(0,1).
a by1 a a byo b
& o)t} oG]
then a,b,c,d can be found.

The images of the points (1,0),(0,1) under a certain transformation are known.

Therefore, the matrix is known.

Eight Simple Transformation

l. Reflection in x-axis

. Reflection in y-axis

1. Reflectionin x=1vy.

V. Reflection in the line y = —x

V. Quarter turn about the origin

VI. Half turn about the origin

VII. Three quarter turn about the origin
VIIIL. Identity Transformation

Some Special Linear Transformations on R?

l. Enlargement




If ‘@‘ =r, then ‘OT‘z k.

s 4

. @ Shearing Parallel to the x-axis

The y-coordinate of a point is unchanged but the x-coordinate is changed by adding to it
(@ quantity which is equal to a multiple of the value of its y-coordinate.

(b) Shearing Parallel to the y-axis

II. Rotation

V. Reflection about the line y = (tana)x

Example If the point P(4,2) is rotated clockwise about the origin through an angle 60°, find its
final position
Solution

: . : . . X
Example A translation on R* which transforms every point P whose position vector is p = [y)

' ' 2
To another point Q with position vector q = @J defined by ();j = @] + (3}

Find the image of () the point (—4,2) (b) the line 2x+y =0

Linear Transformation

Definition  Let V and U be two sets. A mapping o :V —U s called a linear transformation

from V to U if and only if it satisfies the condition:
o(au+bv)=aoc(u)+bo(v),Yu,veV and Va,b e R.

Example Let V be the set of 3x1 matrices and A be any real 3x3 matrix. A mapping f :V >V
Such that f(x) = Ax,¥x eV . Show that f is linear.

In R®, consider a linear transformation o : R®* — R?, let ve R®, v =(a,b,c) = ai+bj+ck .
We are going to find the image of v under o .

o(v) =o(ai+bj+ck) =ac(i)+bo(j)+co(k)
Therefore, o(v) can be found if o(i),o(j) and o (k) are known. That is to say, to specify o
completely, it is only necessary to define o(i),o(j) and o(k).

For instance, we define a linear transformation




o :R* > R® by o(i)=2i— j—3k,o(j) =i+2k,o(k) =3i -2+ 2k.

o (3i +2j — 4K) =
= —4i+5j-13k
We form a matrix A such that A = (c() o(j) oK)
2 1 3
= -1 0 -2
-3 2 2
2 3Y 3 -4
Consider A 2 = -1 -2 2| = 5
-4 -3 2 2 )\-4 -13

The result obtained is just the same as o (3i +2j — 4k) .

The matrix A representing the linear transformation o is called the matrix representation of the
linear transformation o
Example Let o:R® — R?, defined by o(i)=i+2j,0(j) =—-j,o(k) = 4i-3j.

. . : . . (1 0 4
The matrix represent representation of a linear transformation is 5 .
2x3

-1 -3
F &
Example The matrix B=| 0 —1| represents a linear transformation
|

o :R? = R®, defined by o (i) =i+k,o(j)=2i— j +k.

Example Let o,7:R* — R® be two linear transformations whose matrix representations are
respectively
1 0 -1 0 -2 1
A=|0 1 2j|andB=|1 1 O
11 0 2 1 -1

Find the matrix representation of o o 7.

X' a b\ x ) a by, . .
Example If = forany (x,y) € R%, then is said to be the matrix
y' c dily c d

representation of the transformation which transforms (x,y) to (x',y").

Find the matrix representation of

@ the transformation which transforms any point (x,y) to (-x,y),

(b) the transformation which transforms any point (x,y) to (y, X)

Example It is given that the matrix representing the reflection in the line y = (tana)x is

co0s2a Sin2«
sin2a —co0S2«x




Let T be the reflection in the line y = %x.

@ Find the matrix representation of T .

(b) The point (4,7) is transformed by T to another point (x,,y,). Find x,, vy,.
(© The point (4,10) is reflected in the line y = %x +3 to another point (X,,Y,).

Find x, and vy, .




