Bcom 1st Year Business Statistics Formula Notes

Bcom 1st Year Business Statistics Formula Notes :- In this article we are share to Bcom's Subject Business Statistics formula. I hope it is very helpful for you.
1. Individual Series
 (Direct method)
 \[\text{mean}(x) = \frac{\sum x}{N} \]

 (Assume method) assume mid value
 \[\bar{x} = \frac{\sum f_{x}x + \sum f_{x}}{N} \]

2. Discrete Series
 \[\bar{x} = \frac{\sum f_{x}x}{N} \]
 \[\bar{x} = \frac{\sum f_{x}x + \sum f_{x}}{N} \]

3. Continuous Series
 \[\bar{x} = \frac{\sum f_{x}x}{N} \]
 \[\bar{x} = \frac{\sum f_{x}x + \sum f_{x}}{N} \]
1. \text{Median} (\text{Median})

\[\text{ Median } = \frac{\text{Size of } N + 1 \text{ items}}{2} \]

2. If the answer is received in decimal number, the answer is 5.5, 6.5

\[\text{Median} = \frac{5\text{th Item} + 6\text{th Item}}{2} \]

3. \text{Discrete series}

\[\text{Median} = \frac{\text{Size of } N + 1 \text{ items}}{2} \]

\[\text{Note: Series is other in ascending order} \]
Continuous Series

\[m = \text{series of} \ \frac{N}{2} \ \text{items} \]

\[m = \frac{1 + (\frac{2-1}{2}) (m-c)}{f} \]

\[c = \frac{f}{p} (m-c) \]

OR

\[c = \frac{f}{p} \left(\frac{m}{2} - c \right) \]

Note: Before applying compulsory.
1. Individual Series

- Series of first frequency (विश्लेषणात्मक श्रेणी में आता पहली बार आए हुए)
- \(\text{Mode} = \frac{m_2 - m_1}{f_2 - f_1} \)

2. Discrete Series

- Series of first frequency (विश्लेषणात्मक श्रेणी में आता पहली बार आए हुए)
- \(\text{Mode} = \frac{f_2 - f_1}{m_2 - m_1} \)

\[\begin{array}{c|c|c|c|c|c|c}
\text{x} & 5 & 6 & 7 & 8 & 9 & 10 \\\hline
f & 6 & 7 & 17 & 5 & 11 & 15 \\
\end{array} \]

- \(Z = 17 \)
- \(Z = 3m - 2x \)
Continuous series

Simple

\[z = l_1 + \frac{f_1 - f_0}{f_1 - f_0 - f_2} (l_2 - l_1) \]

Alternate formula

\[z = l_1 + \frac{f_2}{f_0 + f_2} (l_2 - l_1) \]
Geometric Means

Individual Series

\[G_m = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n} \]

\[G_m = \text{Geometric Mean} \]
\[n = \text{Number of Items} \]
\[x_1, x_2, \ldots, x_n \quad \text{etc. for values of items} \]

\[G_m = \exp \left(\frac{\ln x_1 + \ln x_2 + \cdots + \ln x_n}{n} \right) \]

Weighted Geometric Means

\[\log G_m = \text{antilog} \left[\frac{\sum \log x_i}{n} \right] \]

Harmonic Means

\[H_m = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}} \]
1. Discrete versus & continuous

\[G_m = \text{Antilog} \left(\frac{1}{n} \sum \log x_i f_i \right) \]

Harmonic Mean: \[\frac{1}{\text{Harmonic Mean}} = \frac{1}{N} \sum \text{reciprocal of } x_i \]

\[\text{WM} = \text{Harmonic Mean of } [\text{Reciprocal of } x_i] \]
Individually select

Quantile (Qg) g

Q1 = \frac{\text{Size of } \lfloor \frac{1(n+1)}{4} \rfloor \text{ th Item}}{n}

Q3 = \frac{\text{Size of } \lfloor \frac{3(n+1)}{4} \rfloor \text{ th Item}}{n}

Decimal Coefficient \(D7 = \frac{\text{Size of } 7(n+1) \text{ th Item}}{10} \)

Percentile (21.84%)

\(P_{180} = \frac{\text{Size of } 80(n+1) \text{ th Item}}{100} \)

Note: Series arrange in Ascending

1st Annu. percent e: London

Ex: 8, 75, 11, 25

8th Items + (19th - 8th Items) x 0.25

11th Items + (12th - 11th Items) x 0.25
Difference between

\[a = \text{Size of } \{ \text{Unit} \} + \text{Items} \]
\[b = \text{Size of } \frac{3(\text{unit})}{4} \]
\[c = \text{Size of } \frac{7(\text{unit})}{10} \]

\[p_0 = \text{Size of } \frac{\text{Interest} + \text{Items}}{100} \]

Never: Always: Cofo: P & model

Continuous: Better

\[a_1 = \text{Size of } \frac{1(\text{unit}) + \text{Items}}{4} \]
\[b_1 = \frac{4 + 5 - 4}{9 - 0} \]
\[c_1 = \frac{8 + 6 - 8}{9 - 0} \]
\[a_2 = \frac{4 + 5 - 4}{9 - 0} \]
\[D_T = \frac{\text{Size of } Z(n)}{10} \text{ in Dense} \]

\[D_T = L_1 + \frac{L_2 - L_1}{N} \text{ for } N \gg 1 \]

\[P_90 = \frac{80\% \text{ of } P_0 \text{ in Dense} \times 100}{\text{Size of } Z(n)} \]

\[P_90 = L_1 + \frac{L_2 - L_1}{N} \cdot (P_90 - L_1) \]

Note: Co to P0 compulsory.
Range = Large Value - Small Value

Inter Quartile Range = O_3 - O_1

Coefficient of Range = \frac{L-S}{L+S}

Percentile Range = P_{90} - P_{10}

Quartile Deviation = \frac{O_3 - O_1}{2}

Coefficient of Quartile Deviation = \frac{O_3 - O_1}{O_3 + O_1}
Mean deviation

\[\bar{d} = \frac{1}{N} \sum |x - \bar{x}| \]

\[\bar{d} = \frac{1}{N} \sum |x - \bar{x}| \]

\[\bar{d} = \frac{1}{N} \sum |x - \bar{x}| \]

\[\bar{d} = \frac{1}{N} \sum |x - \bar{x}| \]
Standard deviation

1. Direct method
 \[SD \left(\bar{X} \right) = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N}} \]

2. Short cut method
 \[SD \left(X \right) = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N}} \]

3. By original data (value square method)
 \[S = \sqrt{\frac{\sum X_i^2}{N} - \left(\frac{\sum X_i}{N} \right)^2} \]

COEFF. OF SD = \frac{S}{\bar{X}}

COEFF. OF VARIANCE = \frac{\%}{100}

\[\% = \frac{S^2}{\bar{X}^2} \times 100 \]

\[S = \sqrt{\text{Variance}} \]
Discrete & Continuous Series

SD (c) = \sqrt{\frac{\sum x^2 f}{N} - \left(\frac{\sum x f}{N}\right)^2}

Direct method

SD (c) = \sqrt{\frac{\sum f x^2}{N} - \left(\frac{\sum f x}{N}\right)^2}

Same method

\sigma = \sqrt{\frac{\sum x^2 f}{N} - \left(\frac{\sum x f}{N}\right)^2} \text{ or } \sqrt{\frac{\sum f x^2}{N} - \left(\frac{\sum f x}{N}\right)^2}
Karl Pearson's measure of skewness
\[Sk = \frac{x - \bar{x}}{s} \text{ or } Sk = 3 \left(\frac{x - \mu}{s} \right) \]

Karl Pearson's coefficient of skewness
\[J = \frac{x - \bar{x}}{\frac{s}{\sqrt{6}}} \text{ or } J = 3 \left(\frac{x - \mu}{s} \right) \]

Bowler's measure of skewness
\[So = \frac{Q_3 - Q_1}{2m} \]

Bowler's coefficient of skewness
\[J_0 = \frac{Q_3 - Q_1 - 2m}{\frac{Q_3 - Q_1}{2m}} \]
sas undirwade says:
August 12, 2018 at 4:56 pm (Edit)

Plz send me b. Com 1st year stastics full note plz

Reply

Lovneet tyagi says:
August 22, 2018 at 4:22 am (Edit)

Very nice one formula in statistics so grateful thank you I reminder so thankful thank you

Reply

Gopal says:
September 10, 2018 at 12:50 pm (Edit)

plz send me b.com lstyear statics full note

Reply

SachinDaksh says:
September 22, 2018 at 2:54 am (Edit)

Statics Ke keval itna hi h

Reply

SachinDaksh says:
September 24, 2018 at 12:22 pm (Edit)

Bcom first year ke full notes website pr hi pade h

Reply

Leave a Reply

Logged in as SachinDaksh. Log out?

Comment

Learn Income Tax

Recent Posts

- B.com 1st, 2nd, 3rd Year Notes and Question Paper
- B.com 1st 2nd 3rd Year Notes and Books Free PDF Download
- Residential Status Income Tax Notes
- B Com 2nd Year Principles of Business Management 2015
- B Com 2nd Year Principles of Business Management 2017
- B Com 2nd Year Principles of Business Management
- Bcom Principle of Marketing Previous Year Paper 2017
- Syllabus Bsc 1st 2nd 3rd Year all Semester
- B Com 2nd Year Fundamental of Entrepreneurship Question Paper
- B Com 2nd Year Fundamental of Entrepreneurship Question Paper 2016
- B Com 2nd Year Fundamental of Entrepreneurship Question Paper 2017
- Syllabus Bcom 1st 2nd 3rd Year all Semester
- B Com 2nd Year Public Finance Question Paper 2015
- B Com 2nd Year Cost Accounting Numerical Question
- B com 2nd Year Public Finance Question Paper 2016
- Bcom 2nd Year Definition of Tax Planning Hindi Notes
- B Com 2nd Year Public Finance Question Paper 2017
- B Com 2nd Year Corporate Low Question Paper 2017
- B com 2nd Year Corporate Low Question Paper 2016
- B Com 2nd Year Corporate Low Question Paper 2015
- B Com 2nd Year Agriculture Income Tax Define Notes
- B Com 2nd Year Income Tax Notes in Hindi
- Bcom Cost Accounting Theory Notes One Day Pattern
- B Com 2nd Year Fundamentals of Entrepreneurship Notes
- Parallel Economy Meaning of Black Money Government Effects Stop Black Money
- Industrial Growth in India b com 1st Year Notes in Hindi
- Business Environment Notes in Hindi Meaning Industrial Policy India Characteristics
- Business Communication An Introduction In English
- Due to Unemployment In India Business Environment Notes In Hindi
- Business Environment Study Material Infection Meaning Savings and Investments
- Business Environment Study Material Due Poverty in India Meaning of Poverty
- Self Development And Communication Business Communication Notes In Hindi
- Meaning Of Industrial Sickness Reason Business Environment Study Material